52 research outputs found

    Dielectric Relaxation and Charged Domain Walls in (K,Na)NbO3-Based Ferroelectric Ceramics

    Full text link
    The influence of domain walls on the macroscopic properties of ferroelectric materials is a well known phenomenon. Commonly, such “extrinsic” contributions to dielectric permittivity are discussed in terms of domain wall displacements under external electric field. In this work, we report on a possible contribution of charged domain walls to low frequency (10-106 Hz) dielectric permittivity in K1-xNaxNbO3 ferroelectric ceramics. It is shown that the effective dielectric response increases with increasing domain wall density. The effect has been attributed to the Maxwell-Wagner-Sillars relaxation. The obtained results may open up possibilities for domain wall engineering in various ferroelectric materials. © 2017 Author(s).The equipment of the Ural Center for Shared Use "Modern Nanotechnology" UrFU has been used. The research was made possible by the Ministry of Education and Science of Russian Federation (UID RFMEFI58715X0022). The authors acknowledge E. L. Rumyantsev and M. Morozov for useful discussion

    Dielectric relaxation and charged domain walls in (K,Na)NbO3-based ferroelectric ceramics

    Full text link
    We report on the evidence of significant contribution of charged domain walls to low frequency dielectric permittivity in KNN ferroelectric ceramics in the frequency range 10-106 Hz. The effect has been attributed to the Maxwell-Wagner-Sillars relaxation.The equipment of the Ural Center for Shared Use "Modern nanotechnology" UrFU was used

    Housing Conditions Differentially Affect Physiological and Behavioural Stress Responses of Zebrafish, as well as the Response to Anxiolytics

    Get PDF
    Zebrafish are a widely utilised animal model in developmental genetics, and owing to recent advances in our understanding of zebrafish behaviour, their utility as a comparative model in behavioural neuroscience is beginning to be realised. One widely reported behavioural measure is the novel tank-diving assay, which has been often cited as a test of anxiety and stress reactivity. Despite its wide utilisation, and various validations against anxiolytic drugs, reporting of pre-test housing has been sparse in the literature. As zebrafish are a shoaling species, we predicted that housing environment would affect their stress reactivity and, as such, their response in the tank-diving procedure. In our first experiment, we tested various aspects of housing (large groups, large groups with no contact, paired, visual contact only, olfactory contact only) and found that the tank diving response was mediated by visual contact with conspecifics. We also tested the basal cortisol levels of group and individually housed fish, and found that individually housed individuals have lower basal cortisol levels. In our second experiment we found ethanol appeared to have an anxiolytic effect with individually housed fish but not those that were group housed. In our final experiment, we examined the effects of changing the fishes' water prior to tank diving as an additional acclimation procedure. We found that this had no effect on individually housed fish, but appeared to affect the typical tank diving responses of the group housed individuals. In conclusion, we demonstrate that housing represents an important factor in obtaining reliable data from this methodology, and should be considered by researchers interested in comparative models of anxiety in zebrafish in order to refine their approach and to increase the power in their experiments

    Adult zebrafish as a model organism for behavioural genetics

    Get PDF
    Recent research has demonstrated the suitability of adult zebrafish to model some aspects of complex behaviour. Studies of reward behaviour, learning and memory, aggression, anxiety and sleep strongly suggest that conserved regulatory processes underlie behaviour in zebrafish and mammals. The isolation and molecular analysis of zebrafish behavioural mutants is now starting, allowing the identification of novel behavioural control genes. As a result of this, studies of adult zebrafish are now helping to uncover the genetic pathways and neural circuits that control vertebrate behaviour

    MicroRNA degradation by a conserved target RNA regulates animal behavior

    Get PDF
    International audiencemicroRNAs (miRNAs) repress target transcripts through partial complementarity. By contrast, highly complementary miRNA-binding sites within viral and artificially engineered transcripts induce miRNA degradation in vitro and in cell lines. Here, we show that a genome-encoded transcript harboring a near-perfect and deeply conserved miRNA-binding site for miR-29 controls zebrafish and mouse behavior. This transcript originated in basal vertebrates as a long noncoding RNA (lncRNA) and evolved to the protein-coding gene NREP in mammals, where the miR-29-binding site is located within the 3′ UTR. We show that the near-perfect miRNA site selectively triggers miR-29b destabilization through 3′ trimming and restricts its spatial expression in the cerebellum. Genetic disruption of the miR-29 site within mouse Nrep results in ectopic expression of cerebellar miR-29b and impaired coordination and motor learning. Thus, we demonstrate an endogenous target-RNA-directed miRNA degradation event and its requirement for animal behavio

    Three-Dimensional Neurophenotyping of Adult Zebrafish Behavior

    Get PDF
    The use of adult zebrafish (Danio rerio) in neurobehavioral research is rapidly expanding. The present large-scale study applied the newest video-tracking and data-mining technologies to further examine zebrafish anxiety-like phenotypes. Here, we generated temporal and spatial three-dimensional (3D) reconstructions of zebrafish locomotion, globally assessed behavioral profiles evoked by several anxiogenic and anxiolytic manipulations, mapped individual endpoints to 3D reconstructions, and performed cluster analysis to reconfirm behavioral correlates of high- and low-anxiety states. The application of 3D swim path reconstructions consolidates behavioral data (while increasing data density) and provides a novel way to examine and represent zebrafish behavior. It also enables rapid optimization of video tracking settings to improve quantification of automated parameters, and suggests that spatiotemporal organization of zebrafish swimming activity can be affected by various experimental manipulations in a manner predicted by their anxiolytic or anxiogenic nature. Our approach markedly enhances the power of zebrafish behavioral analyses, providing innovative framework for high-throughput 3D phenotyping of adult zebrafish behavior

    Direct Visualization of Polar Nanoregions in BaTiO 3

    No full text
    corecore