1,320 research outputs found

    Discovery of Very High Energy gamma - ray emission from the extreme BL Lac object H2356-309 with H.E.S.S

    Get PDF
    The understanding of acceleration mechanisms in active galactic nuclei (AGN) jets and the measurement of the extragalactic-background-light (EBL) density are closely linked and require the detection of a large sample of very-high-energy (VHE) emitting extragalactic objects at varying redshifts. We report here on the discovery with the H.E.S.S. (High Energy Stereoscopic System) atmospheric-Cherenkov telescopes of the VHE Gamma-ray emission from H2356 - 309, an extreme BL Lac object located at a redshift of 0.165. The observations of this object, which was previously proposed as a southern-hemisphere VHE candidate source, were performed between June and December 2004. The total exposure is 38.9 hours live time, after data quality selection, which yields the detection of a signal at the level of 9.0σ\sigma (standard deviations) .Comment: To appear on proceeding of 29th International Cosmic Ray Conference (ICRC 2005

    A Spectacular VHE Gamma-Ray Outburst from PKS 2155-304 in 2006

    Full text link
    Since 2002 the VHE (>100 GeV) gamma-ray flux of the high-frequency peaked BL Lac PKS 2155-304 has been monitored with the High Energy Stereoscopic System (HESS). An extreme gamma-ray outburst was detected in the early hours of July 28, 2006 (MJD 53944). The average flux above 200 GeV observed during this outburst is ~7 times the flux observed from the Crab Nebula above the same threshold. Peak fluxes are measured with one-minute time scale resolution at more than twice this average value. Variability is seen up to ~600 s in the Fourier power spectrum, and well-resolved bursts varying on time scales of ~200 seconds are observed. There are no strong indications for spectral variability within the data. Assuming the emission region has a size comparable to the Schwarzschild radius of a ~10^9 solar mass black hole, Doppler factors greater than 100 are required to accommodate the observed variability time scales.Comment: 4 pages, 3 figures; To appear in the Proceedings of the 30th ICRC (Merida, Mexico

    Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function

    Get PDF
    As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into theunderlying soil, which can impact associated biological community structure andfunction. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m) and temporal (3–732 days) dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C) mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples), the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold) in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples), the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding ecosystem function surrounding carrion decomposition islands and can be applicable to environmental bio-monitoring and forensic sciences

    Itinerant-Electron Magnet of the Pyrochlore Lattice: Indium-Doped YMn2Zn20

    Full text link
    We report on a ternary intermetallic compound, "YMn2Zn20", comprising a pyrochlore lattice made of Mn atoms. A series of In-doped single crystals undergo no magnetic long-range order down to 0.4 K, in spite of the fact that the Mn atom carries a local magnetic moment at high temperatures, showing Curie-Weiss magnetism. However, In-rich crystals exhibit spin-glass transitions at approximately 10 K due to a disorder arising from the substitution, while, with decreasing In content, the spin-glass transition temperature is reduced to 1 K. Then, heat capacity divided by temperature approaches a large value of 280 mJ K-2 mol-1, suggesting a significantly large mass enhancement for conduction electrons. This heavy-fermion-like behavior is not induced by the Kondo effect as in ordinary f-electron compounds, but by an alternative mechanism related to the geometrical frustration on the pyrochlore lattice, as in (Y,Sc)Mn2 and LiV2O4, which may allow spin entropy to survive down to low temperatures and to couple with conduction electrons.Comment: 5 pages, 4 figures, J. Phys. Soc. Jpn., in pres

    Sensory testing in leprosy:Comparison of ballpoint pen and monofilaments

    Get PDF
    The 10 g monofilament has been replaced by the ballpoint pen in routine sensory testing of nerves in leprosy control in Ethiopia. Results of sensory testing between the ballpoint pen and different monofilaments on hands and feet were compared. Ballpoint pen underdiagnosis of loss of sensation was defined to occur when the pen was felt and the monofilament was not. Differences were evaluated both for individual test points (test point level) and for the test points of extremities collectively (extremity level). An extremity (either a hand or a foot) was defined as having sensory nerve function impairment (SNFI) if a supplying nerve had SNFI, which was the case when sensation was absent in two or more test points in the area supplied by that nerve. At test point level, the percentages with ballpoint pen underdiagnosis relative to the 2, 10, 20 and 50 g monofilaments were 40, 21, 9 and 7%, respectively, in the hands, and 47, 30, 15 and 7% in the feet. Ballpoint pen underdiagnosis percentages of SNFI at extremity level were 32, 18, 8 and 9% in the hands, and 37, 26, 14 and 6% in the feet. The risk of ballpoint pen underdiagnosis appears to be higher in extremities without visible damage. In conclusion, substantial levels of underdiagnosis of sensory loss with the ballpoint pen were observed. However, the consequences for the prognosis of treatment with corticosteroids in patients with the more subtle sensation loss noted here need to be established. Development and testing of guidelines is a prerequisite for the use of the ballpoint pen

    Sensory testing in leprosy:Comparison of ballpoint pen and monofilaments

    Get PDF
    The 10 g monofilament has been replaced by the ballpoint pen in routine sensory testing of nerves in leprosy control in Ethiopia. Results of sensory testing between the ballpoint pen and different monofilaments on hands and feet were compared. Ballpoint pen underdiagnosis of loss of sensation was defined to occur when the pen was felt and the monofilament was not. Differences were evaluated both for individual test points (test point level) and for the test points of extremities collectively (extremity level). An extremity (either a hand or a foot) was defined as having sensory nerve function impairment (SNFI) if a supplying nerve had SNFI, which was the case when sensation was absent in two or more test points in the area supplied by that nerve. At test point level, the percentages with ballpoint pen underdiagnosis relative to the 2, 10, 20 and 50 g monofilaments were 40, 21, 9 and 7%, respectively, in the hands, and 47, 30, 15 and 7% in the feet. Ballpoint pen underdiagnosis percentages of SNFI at extremity level were 32, 18, 8 and 9% in the hands, and 37, 26, 14 and 6% in the feet. The risk of ballpoint pen underdiagnosis appears to be higher in extremities without visible damage. In conclusion, substantial levels of underdiagnosis of sensory loss with the ballpoint pen were observed. However, the consequences for the prognosis of treatment with corticosteroids in patients with the more subtle sensation loss noted here need to be established. Development and testing of guidelines is a prerequisite for the use of the ballpoint pen
    corecore