3 research outputs found
GC content shapes mRNA storage and decay in human cells.
mRNA translation and decay appear often intimately linked although the rules of this interplay are poorly understood. In this study, we combined our recent P-body transcriptome with transcriptomes obtained following silencing of broadly acting mRNA decay and repression factors, and with available CLIP and related data. This revealed the central role of GC content in mRNA fate, in terms of P-body localization, mRNA translation and mRNA stability: P-bodies contain mostly AU-rich mRNAs, which have a particular codon usage associated with a low protein yield; AU-rich and GC-rich transcripts tend to follow distinct decay pathways; and the targets of sequence-specific RBPs and miRNAs are also biased in terms of GC content. Altogether, these results suggest an integrated view of post-transcriptional control in human cells where most translation regulation is dedicated to inefficiently translated AU-rich mRNAs, whereas control at the level of 5' decay applies to optimally translated GC-rich mRNAs
GC content shapes mRNA decay and storage in human cells
Control of protein expression results from the fine tuning of mRNA synthesis, decay and translation. These processes, which are controlled by a large number of RNA-binding proteins and by localization in RNP granules such as P-bodies, appear often intimately linked although the rules of this interplay are not well understood. In this study, we combined our recent P-body transcriptome with various transcriptomes obtained following silencing of broadly acting mRNA decay and repression factors. This analysis revealed the central role of GC content in mRNA fate, in terms of P-body localization, mRNA translation and mRNA decay. It also rationalized why PBs mRNAs have a strikingly low protein yield. We report too the existence of distinct mRNA decay pathways with preference for AU-rich or GC-rich transcripts. Compared to this impact of the GC content, sequence-specific RBPs and miRNAs appeared to have only modest additional effects on their bulk targets. Altogether, these results lead to an integrated view of post-transcriptional control in human cells where most regulation at the level of translation is dedicated to AU-rich mRNAs, which have a limiting protein yield, whereas regulation at the level of 5' decay applies to GC-rich mRNAs, whose translation is optimal