42 research outputs found

    Hemispheric asymmetry of endogenous neural oscillations in young children: implications for hearing speech in noise

    Get PDF
    Speech signals contain information in hierarchical time scales, ranging from short-duration (e.g., phonemes) to long-duration cues (e.g., syllables, prosody). A theoretical framework to understand how the brain processes this hierarchy suggests that hemispheric lateralization enables specialized tracking of acoustic cues at different time scales, with the left and right hemispheres sampling at short (25 ms; 40 Hz) and long (200 ms; 5 Hz) periods, respectively. In adults, both speech-evoked and endogenous cortical rhythms are asymmetrical: low-frequency rhythms predominate in right auditory cortex, and high-frequency rhythms in left auditory cortex. It is unknown, however, whether endogenous resting state oscillations are similarly lateralized in children. We investigated cortical oscillations in children (3–5 years; N = 65) at rest and tested our hypotheses that this temporal asymmetry is evident early in life and facilitates recognition of speech in noise. We found a systematic pattern of increasing leftward asymmetry for higher frequency oscillations; this pattern was more pronounced in children who better perceived words in noise. The observed connection between left-biased cortical oscillations in phoneme-relevant frequencies and speech-in-noise perception suggests hemispheric specialization of endogenous oscillatory activity may support speech processing in challenging listening environments, and that this infrastructure is present during early childhood

    Multi-level evidence of an allelic hierarchy of USH2A variants in hearing, auditory processing and speech/language outcomes.

    Get PDF
    Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems

    Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interactions between the immune response and brain functions such as olfactory, auditory, and visual sensations are likely. This study investigated the effect of sounds on alloimmune responses in a murine model of cardiac allograft transplantation.</p> <p>Methods</p> <p>Naïve CBA mice (H2<sup>k</sup>) underwent transplantation of a C57BL/6 (B6, H2<sup>b</sup>) heart and were exposed to one of three types of music--opera (<it>La Traviata</it>), classical (Mozart), and New Age (Enya)--or one of six different single sound frequencies, for 7 days. Additionally, we prepared two groups of CBA recipients with tympanic membrane perforation exposed to opera for 7 days and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment). An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Immunohistochemical, cell-proliferation, cytokine, and flow cytometry assessments were also performed.</p> <p>Results</p> <p>CBA recipients of a B6 cardiac graft that were exposed to opera music and Mozart had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively), whereas those exposed to a single sound frequency (100, 500, 1000, 5000, 10,000, or 20,000 Hz) or Enya did not (MSTs, 7.5, 8, 9, 8, 7.5, 8.5 and 11 days, respectively). Untreated, CBA mice with tympanic membrane perforations and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment) rejected B6 cardiac grafts acutely (MSTs, 7, 8 and 8 days, respectively). Adoptive transfer of whole splenocytes, CD4<sup>+ </sup>cells, or CD4<sup>+</sup>CD25<sup>+ </sup>cells from opera-exposed primary allograft recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and > 100 days, respectively). Proliferation of splenocytes, interleukin (IL)-2 and interferon (IFN)-γ production was suppressed in opera-exposed mice, and production of IL-4 and IL-10 from opera-exposed transplant recipients increased compared to that from splenocytes of untreated recipients. Flow cytometry studies showed an increased CD4<sup>+</sup>CD25<sup>+ </sup>Forkhead box P3 (Foxp3)<sup>+ </sup>cell population in splenocytes from those mice.</p> <p>Conclusion</p> <p>Our findings indicate that exposure to opera music, such as La traviata, could affect such aspects of the peripheral immune response as generation of regulatory CD4<sup>+</sup>CD25<sup>+ </sup>cells and up-regulation of anti-inflammatory cytokines, resulting in prolonged allograft survival.</p

    Heritability of non-speech auditory processing skills

    Get PDF
    Recent insight into the genetic bases for autism spectrum disorder, dyslexia, stuttering, and language disorders suggest that neurogenetic approaches may also reveal at least one etiology of auditory processing disorder (APD). A person with an APD typically has difficulty understanding speech in background noise despite having normal pure-tone hearing sensitivity. The estimated prevalence of APD may be as high as 10% in the pediatric population, yet the causes are unknown and have not been explored by molecular or genetic approaches. The aim of our study was to determine the heritability of frequency and temporal resolution for auditory signals and speech recognition in noise in 96 identical or fraternal twin pairs, aged 6–11 years. Measures of auditory processing (AP) of non-speech sounds included backward masking (temporal resolution), notched noise masking (spectral resolution), pure-tone frequency discrimination (temporal fine structure sensitivity), and nonsense syllable recognition in noise. We provide evidence of significant heritability, ranging from 0.32 to 0.74, for individual measures of these non-speech-based AP skills that are crucial for understanding spoken language. Identification of specific heritable AP traits such as these serve as a basis to pursue the genetic underpinnings of APD by identifying genetic variants associated with common AP disorders in children and adults

    Disruption of Rolandic Gamma-Band Functional Connectivity by Seizures is Associated with Motor Impairments in Children with Epilepsy

    Get PDF
    Although children with epilepsy exhibit numerous neurological and cognitive deficits, the mechanisms underlying these impairments remain unclear. Synchronization of oscillatory neural activity in the gamma frequency range (>30 Hz) is purported to be a mechanism mediating functional integration within neuronal networks supporting cognition, perception and action. Here, we tested the hypothesis that seizure-induced alterations in gamma synchronization are associated with functional deficits. By calculating synchrony among electrodes and performing graph theoretical analysis, we assessed functional connectivity and local network structure of the hand motor area of children with focal epilepsy from intracranial electroencephalographic recordings. A local decrease in inter-electrode phase synchrony in the gamma bands during ictal periods, relative to interictal periods, within the motor cortex was strongly associated with clinical motor weakness. Gamma-band ictal desychronization was a stronger predictor of deficits than the presence of the seizure-onset zone or lesion within the motor cortex. There was a positive correlation between the magnitude of ictal desychronization and impairment of motor dexterity in the contralateral, but not ipsilateral hand. There was no association between ictal desynchronization within the hand motor area and non-motor deficits. This study uniquely demonstrates that seizure-induced disturbances in cortical functional connectivity are associated with network-specific neurological deficits

    “Shall We Play a Game?”: Improving Reading Through Action Video Games in Developmental Dyslexia

    Full text link
    corecore