5 research outputs found

    Primary monocytes regulate endothelial cell survival through secretion of Angiopoietin-1 and activation of endothelial Tie2

    Get PDF
    Objective—Monocyte recruitment and interaction with the endothelium is imperative to vascular recovery. Tie2 plays a key role in endothelial health and vascular remodeling. We studied monocyte-mediated Tie2/angiopoietin signaling following interaction of primary monocytes with endothelial cells and its role in endothelial cell survival. Methods and Results—The direct interaction of primary monocytes with subconfluent endothelial cells resulted in transient secretion of angiopoietin-1 from monocytes and the activation of endothelial Tie2. This effect was abolished by preactivation of monocytes with tumor necrosis factor-α. Although primary monocytes contained high levels of both angiopoietin 1 and 2, endothelial cells contained primarily angiopoietin 2. Seeding of monocytes on serum-starved endothelial cells reduced caspase-3 activity by 46±5.1%, and 52±5.8% after tumor necrosis factor-α treatment and decreased detected single-stranded DNA levels by 41±4.2% and 40±3.5%, respectively. This protective effect of monocytes on endothelial cells was reversed by Tie2 silencing with specific short interfering RNA. The antiapoptotic effect of monocytes was further supported by the activation of cell survival signaling pathways involving phosphatidylinositol 3-kinase, STAT3, and AKT. Conclusion—Monocytes and endothelial cells form a unique Tie2/angiopoietin-1 signaling system that affects endothelial cell survival and may play critical a role in vascular remodeling and homeostasis

    Monocyte activation state regulates monocyte-induced endothelial proliferation through Met signaling

    No full text
    Direct interaction of unactivated primary monocytes with endothelial cells induces a mitogenic effect in subconfluent, injured endothelial monolayers through activation of endothelial Met. We now report that monocytes' contact-dependent mitogenicity is controlled by activation-mediated regulation of hepatocyte growth factor. Direct interaction of unactivated monocytes with subconfluent endothelial cells for 12 hours resulted in 9- and 120-fold increase in monocyte tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) mRNA levels and bitemporal spike in hepatocyte growth factor that closely correlates with endothelial Met and extracellular signal-related kinase (ERK) phosphorylation. Once activated, monocytes cannot induce a second wave of endothelial cell proliferation and endothelial Met phosphorylation and soluble hepatocyte growth factor levels fall off. Monocyte-induced proliferation is dose dependent and limited to the induction of a single cell cycle. Monocytes retain their ability to activate other endothelial cells for up to 8 hours after initial interaction, after which they are committed to the specific cell. There is therefore a profoundly sophisticated mode of vascular repair. Confluent endothelial cells ensure vascular quiescence, whereas subconfluence promotes vessel activation. Simultaneously, circulating monocytes stimulate endothelial cell proliferation, but lose this potential once activated. Such a system provides for the fine balance that can restore vascular and endothelial homeostasis with minimal overcompensation
    corecore