17 research outputs found

    Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators

    Get PDF
    The cell intrinsic antiviral response of multicellular organisms developed over millions of years and critically relies on the ability to sense and eliminate viral nucleic acids. Here we use an affinity proteomics approach in evolutionary distant species (human, mouse and fly) to identify proteins that are conserved in their ability to associate with diverse viral nucleic acids. This approach shows a core of orthologous proteins targeting viral genetic material and species-specific interactions. Functional characterization of the influence of 181 candidates on replication of 6 distinct viruses in human cells and flies identifies 128 nucleic acid binding proteins with an impact on virus growth. We identify the family of TAO kinases (TAOK1, -2 and -3) as dsRNA-interacting antiviral proteins and show their requirement for type-I interferon induction. Depletion of TAO kinases in mammals or flies leads to an impaired response to virus infection characterized by a reduced induction of interferon stimulated genes in mammals and impaired expression of srg1 and diedel in flies. Overall, our study shows a larger set of proteins able to mediate the interaction between viral genetic material and host factors than anticipated so far, attesting to the ancestral roots of innate immunity and to the lineage-specific pressures exerted by viruses. Whether there are conserved nucleic acid (NA) binding proteins across species is not fully known. Using data from human, mouse and fly, the authors identify common binders, implicate TAOKs and show that these kinases bind NAs across species and promote virus defence in mammalian cells.We further thank Korbinian Mayr, Igor Paron, and Gaby Sowa for maintaining mass spectrometers and the MPI-B core facility, especially Judith Scholz, Leopold Urich, Sabine Suppmann, and Stephan Uebel, for support..

    Optically active defects in an InAsP/InP quantum well monolithically grown on SrTiO3(001)

    No full text
    International audienceThe optical properties of an InAsP/InP quantum well grown on a SrTiO3(001) substrate are analyzed. At 13 K, the photoluminescence yield of the well is comparable to that of a reference well grown on an InP substrate. Increasing the temperature leads to the activation of nonradiative mechanisms for the sample grown on SrTiO3. The main nonradiative channel is related to the thermal excitation of the holes to the first heavy hole excited state, followed by the nonradiative recombination of the carriers on twins and/or domain boundaries, in the immediate vicinity of the well
    corecore