841 research outputs found
Throughput Performance Evaluation of Multiservice Multirate OCDMA in Flexible Networks
\u3cp\u3eIn this paper, new analytical formalisms to evaluate the packet throughput of multiservice multirate slotted ALOHA optical code-division multiple-access (OCDMA) networks are proposed. The proposed formalisms can be successfully applied to 1-D and 2-D OCDMA networks with any number of user classes in the system. The bit error rate (BER) and packet correct probability expressions are derived, considering the multiple-access interference as binomially distributed. Packet throughput expressions, on the other hand, are derived considering Poisson, binomial, and Markov chain approaches for the composite packet arrivals distributions, with the latter defined as benchmark. A throughput performance evaluation is carried out for two distinct user code sequences separately, namely, 1-D and 2-D multiweight multilength optical orthogonal code (MWML-OOC). Numerical results show that the Poisson approach underestimates the throughput performance in unacceptable levels and incorrectly predicts the number of successfully received packets for most offered load values even in favorable conditions, such as for the 2-D MWML-OOC OCDMA network with a considerably large number of simultaneous users. On the other hand, the binomial approach proved to be more straightforward, computationally more efficient, and just as accurate as the Markov chain approach.\u3c/p\u3
Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation
\u3cp\u3eIn this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.\u3c/p\u3
Turing machines can be efficiently simulated by the General Purpose Analog Computer
The Church-Turing thesis states that any sufficiently powerful computational
model which captures the notion of algorithm is computationally equivalent to
the Turing machine. This equivalence usually holds both at a computability
level and at a computational complexity level modulo polynomial reductions.
However, the situation is less clear in what concerns models of computation
using real numbers, and no analog of the Church-Turing thesis exists for this
case. Recently it was shown that some models of computation with real numbers
were equivalent from a computability perspective. In particular it was shown
that Shannon's General Purpose Analog Computer (GPAC) is equivalent to
Computable Analysis. However, little is known about what happens at a
computational complexity level. In this paper we shed some light on the
connections between this two models, from a computational complexity level, by
showing that, modulo polynomial reductions, computations of Turing machines can
be simulated by GPACs, without the need of using more (space) resources than
those used in the original Turing computation, as long as we are talking about
bounded computations. In other words, computations done by the GPAC are as
space-efficient as computations done in the context of Computable Analysis
Spatial resolution effect of light coupling structures
This research project was founded by the National Council for Scientific and Technological Development (CNPq) of Brazil (302397/2014-0), by the National Natural Science Foundation of China (11204386, 11411130117, 11334015), by the Open research project of the State Key Laboratory of Optoelectronic Materials and Technologies, Sun-Yat Sen University of China (OEMT-2015-KF-12, OEMT-2015-KF-13) and by EPSRC of U.K. under grant EP/J01771X/1 (Structured Light). Kezheng Li is also supported by the aboard exchange scholar and international doctoral cooperative project of Sun Yat-sen University.The coupling of light between free space and thin film semiconductors is an essential requirement of modern optoelectronic technology. For monochromatic and single mode devices, high performance grating couplers have been developed that are well understood. For broadband and multimode devices, however, more complex structures, here referred to as "coupling surfaces", are required, which are often difficult to realise technologically. We identify general design rules based on the Fourier properties of the coupling surface and show how they can be used to determine the spatial resolution required for the coupler's fabrication. To our knowledge, this question has not been previously addressed, but it is important for the understanding of diffractive nanostructures and their technological realisation. We exemplify our insights with solar cells and UV photodetectors, where high-performance nanostructures that can be realised cost-effectively are essential.Publisher PDFPeer reviewe
Dynamically Driven Renormalization Group Applied to Sandpile Models
The general framework for the renormalization group analysis of
self-organized critical sandpile models is formulated. The usual real space
renormalization scheme for lattice models when applied to nonequilibrium
dynamical models must be supplemented by feedback relations coming from the
stationarity conditions. On the basis of these ideas the Dynamically Driven
Renormalization Group is applied to describe the boundary and bulk critical
behavior of sandpile models. A detailed description of the branching nature of
sandpile avalanches is given in terms of the generating functions of the
underlying branching process.Comment: 18 RevTeX pages, 5 figure
Numerical Determination of the Avalanche Exponents of the Bak-Tang-Wiesenfeld Model
We consider the Bak-Tang-Wiesenfeld sandpile model on a two-dimensional
square lattice of lattice sizes up to L=4096. A detailed analysis of the
probability distribution of the size, area, duration and radius of the
avalanches will be given. To increase the accuracy of the determination of the
avalanche exponents we introduce a new method for analyzing the data which
reduces the finite-size effects of the measurements. The exponents of the
avalanche distributions differ slightly from previous measurements and
estimates obtained from a renormalization group approach.Comment: 6 pages, 6 figure
Stochastic processes and conformal invariance
We discuss a one-dimensional model of a fluctuating interface with a dynamic
exponent . The events that occur are adsorption, which is local, and
desorption which is non-local and may take place over regions of the order of
the system size. In the thermodynamic limit, the time dependence of the system
is given by characters of the conformal field theory of percolation. This
implies in a rigorous way a connection between CFT and stochastic processes.
The finite-size scaling behavior of the average height, interface width and
other observables are obtained. The avalanches produced during desorption are
analyzed and we show that the probability distribution of the avalanche sizes
obeys finite-size scaling with new critical exponents.Comment: 4 pages, 6 figures, revtex4. v2: change of title and minor
correction
Sandpile Model with Activity Inhibition
A new sandpile model is studied in which bonds of the system are inhibited
for activity after a certain number of transmission of grains. This condition
impels an unstable sand column to distribute grains only to those neighbours
which have toppled less than m times. In this non-Abelian model grains
effectively move faster than the ordinary diffusion (super-diffusion). A novel
system size dependent cross-over from Abelian sandpile behaviour to a new
critical behaviour is observed for all values of the parameter m.Comment: 11 pages, RevTex, 5 Postscript figure
The Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension
We consider the Bak-Tang-Wiesenfeld sandpile model on square lattices in
different dimensions (D>=6). A finite size scaling analysis of the avalanche
probability distributions yields the values of the distribution exponents, the
dynamical exponent, and the dimension of the avalanches. Above the upper
critical dimension D_u=4 the exponents equal the known mean field values. An
analysis of the area probability distributions indicates that the avalanches
are fractal above the critical dimension.Comment: 7 pages, including 9 figures, accepted for publication in Physical
Review
- …
