8,459 research outputs found

    Medical Liability Erased: How the Protecting Access to Care Act of 2017 Limits Patients’ Access to Proper Care

    Get PDF
    This paper outlines the severe impact that the Protecting Access to Care Act would have on victims of malpractice who have suffered grave injuries, and also explains how the bill would nearly eliminate patients’ ability to recover damages when doctors or hospitals provide negligent care. Part II of this paper will examine some of the limits that this bill would impose and the impact it would have on injured patients’ ability to recover damages. Part III will describe those entities that are truly driving this bill and what their motives for doing so are. Part IV will clarify some of the misconceptions about tort reform and caps on damages and why the enactment of this bill would ultimately do more harm than good. Finally, Part V will examine the benefits of medical malpractice litigation and why it is imperative to ensure that patients have the ability to find redress in a court of law

    Breakdown of the Internet under intentional attack

    Full text link
    We study the tolerance of random networks to intentional attack, whereby a fraction p of the most connected sites is removed. We focus on scale-free networks, having connectivity distribution of P(k)~k^(-a) (where k is the site connectivity), and use percolation theory to study analytically and numerically the critical fraction p_c needed for the disintegration of the network, as well as the size of the largest connected cluster. We find that even networks with a<=3, known to be resilient to random removal of sites, are sensitive to intentional attack. We also argue that, near criticality, the average distance between sites in the spanning (largest) cluster scales with its mass, M, as sqrt(M), rather than as log_k M, as expected for random networks away from criticality. Thus, the disruptive effects of intentional attack become relevant even before the critical threshold is reached.Comment: Latex, 4 pages, 3 eps figure

    Studies of Bacterial Branching Growth using Reaction-Diffusion Models for Colonial Development

    Get PDF
    Various bacterial strains exhibit colonial branching patterns during growth on poor substrates. These patterns reflect bacterial cooperative self-organization and cybernetic processes of communication, regulation and control employed during colonial development. One method of modeling is the continuous, or coupled reaction-diffusion approach, in which continuous time evolution equations describe the bacterial density and the concentration of the relevant chemical fields. In the context of branching growth, this idea has been pursued by a number of groups. We present an additional model which includes a lubrication fluid excreted by the bacteria. We also add fields of chemotactic agents to the other models. We then present a critique of this whole enterprise with focus on the models' potential for revealing new biological features.Comment: 1 latex file, 40 gif/jpeg files (compressed into tar-gzip). Physica A, in pres

    Modeling branching and chiral colonial patterning of lubricating bacteria

    Full text link
    In nature, microorganisms must often cope with hostile environmental conditions. To do so they have developed sophisticated cooperative behavior and intricate communication capabilities, such as: direct cell-cell physical interactions via extra-membrane polymers, collective production of extracellular "wetting" fluid for movement on hard surfaces, long range chemical signaling such as quorum sensing and chemotactic (bias of movement according to gradient of chemical agent) signaling, collective activation and deactivation of genes and even exchange of genetic material. Utilizing these capabilities, the colonies develop complex spatio-temporal patterns in response to adverse growth conditions. We present a wealth of branching and chiral patterns formed during colonial development of lubricating bacteria (bacteria which produce a wetting layer of fluid for their movement). Invoking ideas from pattern formation in non-living systems and using ``generic'' modeling we are able to reveal novel survival strategies which account for the salient features of the evolved patterns. Using the models, we demonstrate how communication leads to self-organization via cooperative behavior of the cells. In this regard, pattern formation in microorganisms can be viewed as the result of the exchange of information between the micro-level (the individual cells) and the macro-level (the colony). We mainly review known results, but include a new model of chiral growth, which enables us to study the effect of chemotactic signaling on the chiral growth. We also introduce a measure for weak chirality and use this measure to compare the results of model simulations with experimental observations.Comment: 50 pages, 24 images in 44 GIF/JPEG files, Proceedings of IMA workshop: Pattern Formation and Morphogenesis (1998

    Real-Time Classification of Twitter Trends

    Get PDF
    Social media users give rise to social trends as they share about common interests, which can be triggered by different reasons. In this work, we explore the types of triggers that spark trends on Twitter, introducing a typology with following four types: 'news', 'ongoing events', 'memes', and 'commemoratives'. While previous research has analyzed trending topics in a long term, we look at the earliest tweets that produce a trend, with the aim of categorizing trends early on. This would allow to provide a filtered subset of trends to end users. We analyze and experiment with a set of straightforward language-independent features based on the social spread of trends to categorize them into the introduced typology. Our method provides an efficient way to accurately categorize trending topics without need of external data, enabling news organizations to discover breaking news in real-time, or to quickly identify viral memes that might enrich marketing decisions, among others. The analysis of social features also reveals patterns associated with each type of trend, such as tweets about ongoing events being shorter as many were likely sent from mobile devices, or memes having more retweets originating from a few trend-setters.Comment: Pre-print of article accepted for publication in Journal of the American Society for Information Science and Technology copyright @ 2013 (American Society for Information Science and Technology

    Geographical Embedding of Scale-Free Networks

    Full text link
    A method for embedding graphs in Euclidean space is suggested. The method connects nodes to their geographically closest neighbors and economizes on the total physical length of links. The topological and geometrical properties of scale-free networks embedded by the suggested algorithm are studied both analytically and through simulations. Our findings indicate dramatic changes in the embedded networks, in comparison to their off-lattice counterparts, and call into question the applicability of off-lattice scale-free models to realistic, everyday-life networks

    Two-Source Condensers with Low Error and Small Entropy Gap via Entropy-Resilient Functions

    Get PDF
    In their seminal work, Chattopadhyay and Zuckerman (STOC\u2716) constructed a two-source extractor with error epsilon for n-bit sources having min-entropy {polylog}(n/epsilon). Unfortunately, the construction\u27s running-time is {poly}(n/epsilon), which means that with polynomial-time constructions, only polynomially-small errors are possible. Our main result is a {poly}(n,log(1/epsilon))-time computable two-source condenser. For any k >= {polylog}(n/epsilon), our condenser transforms two independent (n,k)-sources to a distribution over m = k-O(log(1/epsilon)) bits that is epsilon-close to having min-entropy m - o(log(1/epsilon)). Hence, achieving entropy gap of o(log(1/epsilon)). The bottleneck for obtaining low error in recent constructions of two-source extractors lies in the use of resilient functions. Informally, this is a function that receives input bits from r players with the property that the function\u27s output has small bias even if a bounded number of corrupted players feed adversarial inputs after seeing the inputs of the other players. The drawback of using resilient functions is that the error cannot be smaller than ln r/r. This, in return, forces the running time of the construction to be polynomial in 1/epsilon. A key component in our construction is a variant of resilient functions which we call entropy-resilient functions. This variant can be seen as playing the above game for several rounds, each round outputting one bit. The goal of the corrupted players is to reduce, with as high probability as they can, the min-entropy accumulated throughout the rounds. We show that while the bias decreases only polynomially with the number of players in a one-round game, their success probability decreases exponentially in the entropy gap they are attempting to incur in a repeated game
    • …
    corecore