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Abstract
In their seminal work, Chattopadhyay and Zuckerman (STOC’16) constructed a two-source extractor
with error ε for n-bit sources having min-entropy polylog(n/ε). Unfortunately, the construction’s
running-time is poly(n/ε), which means that with polynomial-time constructions, only polynomially-
small errors are possible. Our main result is a poly(n, log(1/ε))-time computable two-source
condenser. For any k ≥ polylog(n/ε), our condenser transforms two independent (n, k)-sources to a
distribution over m = k −O(log(1/ε)) bits that is ε-close to having min-entropy m− o(log(1/ε)).
Hence, achieving entropy gap of o(log(1/ε)).

The bottleneck for obtaining low error in recent constructions of two-source extractors lies in
the use of resilient functions. Informally, this is a function that receives input bits from r players
with the property that the function’s output has small bias even if a bounded number of corrupted
players feed adversarial inputs after seeing the inputs of the other players. The drawback of using
resilient functions is that the error cannot be smaller than ln r/r. This, in return, forces the running
time of the construction to be polynomial in 1/ε.

A key component in our construction is a variant of resilient functions which we call entropy-
resilient functions. This variant can be seen as playing the above game for several rounds, each
round outputting one bit. The goal of the corrupted players is to reduce, with as high probability
as they can, the min-entropy accumulated throughout the rounds. We show that while the bias
decreases only polynomially with the number of players in a one-round game, their success probability
decreases exponentially in the entropy gap they are attempting to incur in a repeated game.
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43:2 Two-Source Condensers with Low Error and Small Entropy Gap

1 Introduction

The problem of extracting randomness from imperfect random sources can be traced back to
von Neumann [45]. Ideally, and somewhat informally, a randomness extractor is an algorithm
that produces, or extracts, truly random bits from an imperfect source of randomness. Going
beyond that particular task, randomness extractors have found dozens of applications for
error correcting codes, cryptography, combinatorics, and circuit lower bounds to name a few.

An imperfect source of randomness is modelled by a random variable X that, for con-
venience sake, is assumed to be supported on n-bit strings. The standard measure for the
amount of randomness in X is its min-entropy [18], which is the maximum k ≥ 0 for which
one cannot guess X with probability larger than 2−k. For any such k, we say that X is an
(n, k)-source, or a k-source for short.

Ideally, a randomness extractor would have been defined as a function Ext : {0, 1}n →
{0, 1}m with the property that for every random variable X with sufficiently high min-entropy,
the output Ext(X) is ε-close to the uniform distribution on {0, 1}m in the statistical distance,
which we write as Ext(X) ≈ε Um. Unfortunately, such a function Ext, even for very high
min-entropy k = n− 1 and, when set with a modest error guarantee ε = 1/4 and a single
output bit m = 1, does not exist. In light of that, several types of randomness extractors,
that relax in different ways the above ideal definition, have been introduced and studied in
the literature. In this work, we focus on one such well-studied instantiation.

I Definition 1 (Two-source extractors [18]). A function Ext : {0, 1}n×{0, 1}n → {0, 1}m is a
two-source extractor for min-entropy k with error guarantee ε if for every pair of independent
(n, k)-sources X,Y , the output distribution Ext(X,Y ) ≈ε Um.

The existence of a two-source extractor for any min-entropy k = Ω(log(n/ε)) with m =
2k −O(log(1/ε)) output bits was proved in [18]. In the same paper, an explicit construction
of a two-source extractor for min-entropy k > n/2 was obtained. Remarkably, despite much
attention [13, 42, 12, 31] and progress on relaxed settings [6, 41, 33, 32, 34, 20], the problem
of constructing two-source extractors even for min-entropy as high as k = 0.1n with m = 1
output bits remained open for 30 years. To appreciate the difficulty of constructing two-source
extractors, we remark that such constructions yield explicit constructions of Ramsey graphs,
a notoriously hard problem in combinatorics [1, 38, 25, 19, 26, 3, 27, 39, 5, 6, 7, 23].

In their breakthrough result, Chattopadhyay and Zuckerman [17] were finally able to
obtain an explicit two-source extractor for min-entropy k = polylog(n/ε). Partially motivated
by the problem of constructing Ramsey graphs, a line of followup works [24, 16, 21, 9, 22,
35, 36] focused on the case of constant error ε and was devoted for reducing the min-entropy
requirement as a function of n. The state of the art result in this line of work is due to
Li [36] and requires min-entropy logn·log logn

log log logn · poly(1/ε).

1.1 Resilient Functions – The Barrier for Obtaining Extractors With
Low Error

Unfortunately, despite the fact that the dependence of the min-entropy of the Chattopadhyay-
Zuckerman extractor on ε is polynomially-close to optimal, the running-time of their con-
struction depends polynomially on 1/ε rather than the desired polylog(1/ε) dependence. The
same holds for all subsequent constructions. That is, these constructions are not strongly
polynomial-time and, in particular, the error guarantee cannot be taken to be sub-polynomial
in n while maintaining running-time poly(n). This stands in contrast to classical extractors
for high min-entropy [18, 42, 13, 31] that are strongly polynomial-time, and can support
exponentially-small error.
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Informally speaking, the reason for this undesired dependence of the running-time on ε
lies in the use of a so-called resilient function [11]. A q-resilient function f : {0, 1}r → {0, 1}
can be thought of as an r-player game. If all players feed uniform and independent inputs to
f , the output distribution has small bias, and, furthermore, this property is retained even
if any q players decide to deviate from the rules of the game and choose their inputs as a
function of all other inputs to f .

Majority on r input bits is an example of a q-resilient function with q = O(
√
r). Ajtai

and Linial proved, using the probabilistic method, the existence of a q-resilient function for
q = O( r

log2 r
) [2]. The KKL Theorem [30] implies that the Ajtai-Linial function is tight up to

a log r factor. Chattopadhyay and Zuckerman [17] constructed a derandomized version of the
Ajtai-Linial function with q = r1−δ, for any constant δ > 0. Their construction has further
desirable properties. In a subsequent work, Meka obtained a derandomized version of the
Ajtai-Linial function with the same parameters as the randomized construction [37]. However,
no matter what function is chosen, [30] showed that there is always a single corrupted player
that has influence p = Ω( log r

r ), i.e., with probability p over the input fed by the other players,
the single corrupted player can fully determine the result.

Almost all constructions of randomness extractors following [17] can be divided into
two steps. First, the two n-bit sources X,Y are “transformed” to a single r-bit source
Z = h(X,Y ) with some structure, called a non-oblivious bit-fixing source. A resilient function
f : {0, 1}r → {0, 1} is then applied to Z so to obtain the output Ext(X,Y ) = f(h(X,Y )). In
all works, the function h is based on non-malleable extractors or on related primitives such
as correlation breakers. As mentioned above, the use of the resilient function implies that
even a single corrupted player has influence Ω( log r

r ) and so to obtain an error guarantee ε,
the number of players r must be taken larger than 1/ε. This results in running-time Ω(1/ε).1

1.2 Entropy-Resilient Functions

To obtain our condenser, we extend the notion of resilient functions to functions outputting
many bits. Informally speaking, instead of considering an r-player game in which the bad
players try to bias the output, we study a repeated game version in which the r players play
for m rounds. The bad players attempt to decrease, with as high probability as they can,
the min-entropy of the m-bit outcome (and we will even allow the bad players to cast their
votes after the good players played all rounds).

Recall that, by [30], when m = 1, even a single player can bias the result by Ω( log r
r ).

Put differently, viewing this bias as the error of a deterministic extractor, the error is bound
to be at least polynomially-small in the number of players. Our key insight is that when
m becomes large, the probability that the bad players can reduce g bits of entropy from
the output (creating an “entropy gap” of g) is exponentially small in g. We further show
that this holds for a specific function f , induced by the Ajtai-Linial function, even when the
honest players are only t-wise independent (for t = polylog(r/ε)). Our analysis uses and
extends ideas from the work of Chattopadhyay and Zuckerman [17].

1 There is one exception to the above scheme. In [8], it is shown that if very strong t-non-malleable
extractors can be explicitly constructed then the function f can be replaced with the parity function
(which is not resilient at all) and low error two-source extractors with low min-entropy requirement can
be obtained. However, it is not known how to explicitly construct such t-non-malleable extractors.

APPROX/RANDOM 2019
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1.3 The Two-Source Condensers We Obtain
The main contribution of this work is an explicit construction of a two-source condenser
with low error and small entropy gap, outputting almost all of the entropy from one source.

I Definition 2 (Two-source condensers). A function Cond : {0, 1}n × {0, 1}n → {0, 1}m is a
two-source condenser for min-entropy k with min-entropy gap g and error guarantee ε if for
every pair of independent (n, k)-sources, Cond(X,Y ) is ε-close to an (m,m− g)-source.

Note that a two-source extractor is a two-source condenser with entropy gap g = 0. Thus,
condensers can be seen as a relaxation of extractors in which some, hopefully small, “gap”
of min-entropy in the output distribution is allowed. Despite having a weaker guarantee,
condensers play a key role in the construction of many types of randomness extractors,
including two-source extractors [9], their variants [42, 6, 47, 41, 32], and seeded-extractors [28].
Most related to our work is a paper by Rao [40] that, for every δ > 0, constructed a
poly(n, log(1/ε))-time computable two-source condenser2 for min-entropy k = δn having
m = Ω(δn) output bits with entropy gap g = poly(1/δ, log(1/ε)).

In this work, we obtain a strongly polynomial-time construction of a two-source condenser
with low error and small min-entropy gap.

I Theorem 3 (Main result). For all integers n, k and every ε > 0 such that n ≥ k ≥
polylog(nε ), there exists a poly(n, log(1/ε))-time computable two-source condenser

Cond : {0, 1}n × {0, 1}n → {0, 1}m

for min-entropy k, with error guarantee ε, min-entropy gap g = o(log 1
ε ), and m = k −

O(log(1/ε)) output bits.

Note that the entropy gap g is independent of the entropy k and scales sub-logarithmically
with 1/ε. We prove Theorem 3, whose formal statement is given in Theorem 31, in two
steps. First, we construct a two-source condenser with the same guarantees as provided by
Theorem 3, though only with m = kα output bits, where 0 < α < 1 is some small universal
constant (see Theorem 27). This part of the construction is based on our study of entropy-
resilient functions (Section 3) and on the adaptation of the Chattopadhyay-Zuckerman
construction for entropy-resilient functions. To reduce the huge entropy-loss we incur (i.e.,
to increase the output length from kα to k −O(log(1/ε))), in the second step, we construct
a seedless condenser for block-sources–a result that we believe is of independent interest on
which we now elaborate.

1.4 Seedless Condensers for a Single Block-Source
A (k1, k2)-block-source is a pair of random variables X1, X2 that, although may be dependent,
have the following guarantee. First, X1 is a k1-source, and second, conditioned on any fixing
of X1, the random variable X2 has min-entropy k2. Throughout this section, we denote the
length of X1 by n1 and the length of X2 by n2. Informally, the notion of a block-source “lies
between” a single source and two independent sources. Indeed, any (k1, k2)-block-source is a
(k1 + k2)-source. Moreover, if X1 is a k1-source and X2 is an independent k2-source then
X1, X2 is a (k1, k2)-block-source.

2 To the matter of fact, Rao entitled his construction a “two-source almost extractor” – a suitable name
given its small entropy gap.
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Block-sources are key to almost all constructions of seeded extractors as well as to the
construction of Ramsey graphs. As mentioned above, there is no one-source extractor,
whereas two-source extractors exist even for very low min-entropy. Despite being more
structured than a general source, it is a well-known fact that there is no extractor for a single
block-source (with non-trivial parameters).

A key component that allows us to increase the output length of our condenser discussed
above is a seedless condenser for a single block-source. Let X1, X2 be a (k1, k2)-block-
source. Write g = n2 − k2 for the entropy gap of X2. For any given ε > 0, we show
how to deterministically transform X1, X2 to a single m-bit random variable, where m =
k1 − g −O(log(1/ε)), that is ε-close to having min-entropy m− g − 1. That is, informally,
we are able to condense X1 roughly to its entropy content k1 using (the dependent random
variable) X2 while inheriting the entropy gap of X2 both in the resulted entropy gap and
entropy loss. We stress that this transformation is deterministic. This demonstrates that
despite the well-known fact that a block-source extractor does not exist, a block-source
condenser does. For a formal treatment, see Section 5.

1.5 A Three-Source Extractor
An immediate implication of Theorem 3 are low error three-source extractors supporting
min-entropies k1 = k2 = polylog(n/ε) and k3 = Ω(log(1/ε)). This is achieved by feeding our
condenser’s output Y = Cond(X1, X2) as a seed to a seeded extractor that supports small
entropies (see, e.g., Theorem 10), outputting Ext(X3, Y ).

I Corollary 4. For all integers n, k, k′ and every ε > 0 such that n ≥ k ≥ polylog(nε ) and
n ≥ k′ ≥ Ω(log 1

ε ) there exists a poly(n, log(1/ε))-time computable three-source extractor

3Ext : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}m

for min-entropies k, k, k′ and error guarantee ε, where m = k′ −O(log(1/ε)).

Proof. Set ε′ = ε2, let k′ ≥ 2 log(1/ε′) + O(1) and let Ext : {0, 1}n × {0, 1}d → {0, 1}m

be the (k′, ε′)-strong-seeded-extractor guaranteed to us by Theorem 10, where m = k′ −
2 log(1/ε)−O(1) and d = O(logn log(n/ε′)).

Let k be large enough for Cond : {0, 1}n × {0, 1}n → {0, 1}d given to us by Theorem 31
to output d bits with error ε/2 and entropy gap g = o(log(1/ε)), so indeed k ≥ polylog(nε ).

Denote Y = Cond(X1, X2), so Y is (ε/2)-close to some random variable Y ′ having
min-entropy at least d− g. Then:

|Ext(X3, Y )− Um × Y | ≤ |Ext(X3, Y
′)− Um × Y ′|+

ε

2
=

∑
y∈supp(Y ′)

Pr[Y ′ = y] · |Ext(X3, y)− Um|+
ε

2

≤
∑

y∈{0,1}d
2−(d−g) · |Ext(X3, y)− Um|+

ε

2

≤ 2g
∑

y∈{0,1}d
2−d|Ext(X3, y)− Um|+

ε

2

= 2g · |Ext(X3, Ud)− Um × Ud|+
ε

2 ≤ 2gε′ + ε

2 ≤ ε,

thereby also showing that 3Ext(X1, X2, X3) = Ext(X3, Y ) is strong in Y . J

APPROX/RANDOM 2019
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When ε is sub-polynomial in n (which is an interesting regime of parameters because then
the two-source extractor of [17] is not polynomial-time computable) Corollary 4 improves
upon known three-source extractors that either require all three-sources to have min-entropy
polylog(nε ) [34] or require, for any parameter of choice δ > 0, min-entropies δn, poly( 1

δ ) log(nε ),
poly( 1

δ ) log( logn
ε ) [20].

We remark that the proof of Corollary 4 goes through because the tiny entropy gap g
of Y = Cond(X1, X2) (where g = o(log 1

ε )) allows us to use Y as a replacement to a truly
uniform seed with only a minor loss in parameters. We believe this should also be true
in other circumstances where random variables with a negligible entropy gap can replace
uniform random variables. A recent example to this is the use of samplers with multiplicative
error instead of standard samplers in [9].

To conclude, we believe that the use of entropy-resilient functions as a tool to extract
almost all the entropy from bit-fixing sources while suffering only a small error is both natural
and interesting on its own. We hope the tools and constructions developed in this paper will
be of further use, possibly for constructing low error two-source extractors. In particular,
we have seen in Corollary 4 that by using an independent third source and outputting
Ext(X3,Cond(X1, X2)) we get an excellent three-source extractor. An open problem left by
our work is whether outputting Ext(X2,Cond(X1, X2)) gives a low-error two-source extractor.
We remark that a similar idea has been used in previous constructions [34, 10] and elsewhere.
We were not able to prove that Ext(X2,Cond(X1, X2)) gives a low-error two-source extractor
and we leave this as an intriguing open problem.

2 Preliminaries

We use log(x) for log2(x). For an integer n, we denote by [n] the set {1, . . . , n}. The density
of a subset B ⊆ A is denoted by µ(B) = |B|

|A| .

2.1 Random Variables, Min-Entropy
The statistical distance between two distributions X and Y over the same domain Ω is defined
by SD(X,Y ) = maxA⊆Ω(Pr[X ∈ A] − Pr[Y ∈ A]). If SD(X,Y ) ≤ ε we say X is ε-close
to Y and denote it X ≈ε Y . We denote by Un the random variable distributed uniformly
over {0, 1}n.

For a function f : Ω1 → Ω2 and a random variable X distributed over Ω1, f(X) is the
random variable distributed over Ω2 obtained by choosing x ∼ X and outputting f(x). For
every f : Ω1 → Ω2 and two random variables X,Y over Ω1 it holds that SD(f(X), f(Y )) ≤
SD(X,Y ).

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈supp(X)

log 1
Pr[X = x] .

A random variable X is an (n, k)-source if X is distributed over {0, 1}n and has min-entropy
at least k. When n is clear from the context we sometimes omit it and simply say that X is
a k-source.

2.2 Limited Independence
I Definition 5. A distribution X over {0, 1}n is called (t, γ)-wise independent if the restric-
tion of X to every t coordinates is γ-close to Ut.

I Lemma 6 ([4]). Let X = X1, . . . , Xn be a distribution over {0, 1}n that is (t, γ)-wise
independent. Then, X is (ntγ)-close to a t-wise independent distribution.
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2.3 Seeded Extractors
I Definition 7 (Seeded extractors). A function

Ext : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, ε)-seeded-extractor if the following holds. For every (n, k)-source X, the output
Ext(X,Y ) ≈ε Um, where Y is uniformly distributed over {0, 1}d and is independent of X.
Further, Ext is a (k, ε)-strong-seeded-extractor if (Ext(X,Y ), Y ) ≈ε (Um, Y ).

I Theorem 8 ([28]). There exists a universal constant cGUV ≥ 2 for which the following
holds. For every integers n ≥ k and ε > 0 there exists a poly(n, log(1/ε))-time computable
(k, ε)-strong-seeded-extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d = cGUV log(n/ε) and m = k/2 output bits.

Extractors can be used for sampling using weak sources.

I Theorem 9 ([46]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k1, ε)-seeded-extractor.
Identify {0, 1}d with [2d] and let S(X) =

{
Ext(X, 1), . . . ,Ext(X, 2d)

}
. Then, for every

(n, k2)-source X and any set T ⊆ {0, 1}m,

Pr
x∼X

[∣∣∣∣ |S(x) ∩ T |
2d − µ(T )

∣∣∣∣ > ε

]
≤ 2−(k2−k1).

The following extractor allows us to extract all the min-entropy, at the cost of a larger
seed-length.

I Theorem 10 ([28]). There exists a universal constant c such that the following holds.
For all integers n ≥ k and any ε > 0 such that k ≥ 2 log(1/ε) + O(1), there exists a
poly(n, log(1/ε))-time computable (k, ε)-strong-seeded-extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d = c logn · log n
ε and m = k − 2 log 1

ε −O(1) output bits.

2.4 Two-Source Condensers
I Definition 11 (Condensers). A function

Cond : {0, 1}n1 × {0, 1}n2 → {0, 1}m

is an ((n1, k1), (n2, k2)) →ε (m, k′ = m − g) condenser if the following holds. For every
(n1, k1)-source X1 and an independent (n2, k2)-source X2, the output Cond(X1, X2) is ε-close
to an (m, k′)-source. We refer to ε as the error guarantee and to g as the entropy gap of Cond.

I Definition 12 (Strong condensers). A function

Cond : {0, 1}n1 × {0, 1}n2 → {0, 1}m

is a ((n1, k1), (n2, k2))→ε1,ε2 (m, k′)-strong-condenser (in the first source) if the following
holds. For every (n1, k1)-source X1 and an independent (n2, k2)-source X2, with probability
1− ε1 over x1 ∼ X1, the output Cond(x1, X2) is ε2-close to an (m, k′)-source.

Similarly, one can define, in the natural way, a condenser that is strong in the second source.

APPROX/RANDOM 2019
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2.5 Non-Malleable Extractors
I Definition 13. A function nmExt : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) t-non-malleable
extractor, if for every (n, k)-source X, for every independent random variable Y that is
uniform over {0, 1}d and every functions f1, . . . , ft : {0, 1}d → {0, 1}d with no fixed-points3
it holds that:

(nmExt(X,Y ), nmExt(X, f1(Y )), . . . , nmExt(X, ft(Y ), Y ) ≈ε
(Um, nmExt(X, f1(Y )), . . . , nmExt(X, ft(Y ), Y )).

We will need the following lemma concerning the existence of a set of good seeds of a
non-malleable extractor, given in [17].

I Lemma 14 ([17]). Let nmExt : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) t-non-malleable
extractor. Let X be any (n, k)-source. Let BAD be the set defined by

BAD = {r ∈ [D] | ∃ distinct r1, . . . , rt ∈ [D],∀i ∈ [t] ri 6= r, |(nmExt(X, r),
nmExt(X, r1), . . . , nmExt(X, rt))− (Um, nmExt(X, r1), . . . , nmExt(X, rt))| >

√
ε}.

Then, µ(BAD) ≤
√
ε. We refer to the set [D] \ BAD as the set of good seeds (with respect

to the underlying distribution of X).

I Lemma 15. Let X1, . . . , Xt be random variables over {0, 1}m. Further suppose that for
any i ∈ [t],(

Xi, {Xj}j 6=i
)
≈ε
(
Um, {Xj}j 6=i

)
.

Then, (X1, . . . , Xt) ≈tε Utm.

Finally, good explicit constructions of t-non-malleable extractors exist. The following
choice of parameters will be sufficient for us.

I Theorem 16 ([15, 22, 35]). There exists a universal constant cnm ≥ 2 such that for
all integers n, k, t, and every ε > 0 such that n ≥ k ≥ cnmt

2 log2(n/ε), there exists a
poly(n, log(1/ε))-time computable (k, ε) t-non-malleable extractor

nmExt : {0, 1}n × {0, 1}d → {0, 1}m

with m = k
3t output bits and seed length d = cnmt

2 log2(n/ε).

2.6 Fooling AC Circuits
A Boolean circuit is an AC[d, s] circuit if it has depth d, size s and unbounded fan-in. We say
that a circuit C with n input bits is ε-fooled by a distribution D if SD(C(D), D(Un)) ≤ ε.

Harsha and Srinivasan [29], improving upon Braverman’s seminal result [14] (see also
[44]) proved:

I Theorem 17 ([29]). There exists a constant c > 0 such that the following holds. For every
integers s, d, t, any AC[d, s] circuit is ε-fooled by any t-wise independent distribution, where
ε = 2−

t

(log s)c·d .

3 That is, for every i and every x, we have fi(x) 6= x.
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We need a slight generalization of Theorem 17:

I Lemma 18. There exists a constant c > 0 such that the following holds for every integers
n,m, d, s, where m ≤ s. Let C : {0, 1}n → {0, 1}m be an AC[d, s] circuit. Then, C is ε-fooled
by any t-wise independent distribution, where ε = 2m−

t

(log s)c·d .

Proof. Fix some z ∈ {0, 1}m and consider the circuit Cz : {0, 1}n → {0, 1} that given an
input x ∈ {0, 1}n checks whether C(x) = z. Cz can be constructed by adding an AND gate
and m comparators on top of C, so clearly Cz is an AC[d+ 2, s′] circuit for s′ = s+O(m).
By Theorem 17, every t-wise distribution ε′-fools Cz, where

ε′ = 2
− t

(log s′)c′·(d+2) ≤ 2−
t

(log s)c·d

for some universal constants c, c′ > 0 (using the fact that m ≤ s). That is, for every t-wise
distribution D and z ∈ {0, 1}m, SD(Cz(D), Cz(Un)) ≤ ε′. Now,

ε = SD(C(D), C(Un)) = 1
2

∑
z∈{0,1}m

|Pr[C(D) = z]− Pr[C(Un) = z]|

=
∑

z∈{0,1}m

1
2 |E[Cz(D)]− E[Cz(Un)]| ≤ 2mε′,

as desired. J

3 Entropy-Resilient Functions

I Definition 19 (Non-oblivious sources). Let Σ = {0, 1}m. A (q, t)-non-oblivious Σ-fixing
source X = (X1, . . . , Xr) is a random variable over Σr = {0, 1}rm for which there exists a
set Rbad ⊆ [r] of cardinality q′ ≤ q such that:

The joint distribution of {(Xi)j | i ∈ [r] \Rbad, j ∈ [m]}, denoted by GX , is t-wise inde-
pendent over {0, 1}(r−q

′)m; and
Each of the random variables in BX , {(Xi)j} with i ∈ Rbad and j ∈ [m] may depend
arbitrarily on all other random variables in GX and BX .

If t = (r − q′)m we say X is a q-non-oblivious Σ-fixing source. If m = 1 we say X is a
bit-fixing source and the definition coincides with the standard definition of non-oblivious
bit-fixing sources [11]. When X is clear from context, we write G and B for GX and BX ,
respectively.

I Definition 20 (Entropy-resilient functions). Let Σ = {0, 1}m. A function f : Σr → Σ is a
(q, t, g, ε)-entropy-resilient function if for every (q, t)-non-oblivious Σ-fixing source X over
Σr, the output f(X) is ε-close to an (m,m− g)-source. If g = 0 we say f is (q, t, ε)-resilient.

3.1 Functions With One Output Bit

I Definition 21. Let f : {0, 1}r → {0, 1} be an arbitrary function. Let X be a (q, t)-non-
oblivious bit-fixing source over {0, 1}r. Define E(f) to be the event in which the bits tossed
by the good players do not determine the value of the function f . We define the influence of
the bad players by I(f) = Pr[E(f)].

APPROX/RANDOM 2019
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Balanced resilient functions can be seen as deterministic extractors against non-oblivious
bit-fixing sources outputting one bit. Chattopadhyay and Zuckerman [17], followed by an
improvement by Meka [37], derandomized the Ajtai-Linial function [2] and obtained an
explicit construction of an almost-balanced resilient function which is also computable by
monotone AC0 circuits.

I Theorem 22 ([17, 37]). For every constant 0 < δ < 1, there exists a constant cδ ≥ 1 such
that for every constant c ≥ cδ and integer r there exists a monotone function Res : {0, 1}r →
{0, 1} such that for every t ≥ c log4 r,

For every (q, t)-non-oblivious bit-fixing source X, I(Res) ≤ c · q
r1−δ .

For every t-wise independent distribution D, bias(Res(D)) ≤ r−1/c.

The function Res is computable by a uniform depth 3 monotone circuit of size rc. Further,
the function cδ(δ) is continuous and monotonically decreasing.

Throughout the paper we make use of the following corollary.

I Corollary 23. For every constant 0 < γ < 1 there exist constants 0 < α < β < 1 such that
for every integer r there exists a function Res : {0, 1}r → {0, 1} which for every t ≥ 1

β log4 r

satisfies: For every (r1−γ , t)-non-oblivious bit-fixing source X,

I(Res) ≤ 1
β
· r−α,

bias (Res(X) | ¬E(Res)) ≤ 3
β
· r−α.

The function Res is computable by a uniform depth 3 monotone circuit of size r
1
β .

Proof. Using the notations of Theorem 22, assume that for every η, cη > 1
2η (if not, we

can always increases cη). Given γ > 0, set δ to be the constant satisfying the equation
f(δ) = δ − γ + 1

2cδ = 0. Such a δ exists, as f(δ) ≤ 2δ − γ and therefore f(δ) < 0 when δ
approaches 0, and f(δ) > 0 when δ approaches γ. Note that by our choice of δ, it holds that

δ < γ = δ + 1
2cδ

< δ + 1
cδ
.

Set α = γ − δ > 0 and β = 1
cδ
. Note that indeed β > α.

By Theorem 22, applied with the constant δ, it holds that I(Res) ≤ cδ
r1−γ

r1−δ = 1
β r
−α.

Further, bias(Res(D)) ≤ r−β .
Following similar arguments as in [17], we have that bias(Res(X)) ≤ 1

β r
−α + r−β , so

bias (Res(X) | ¬E(Res)) ≤
1
β r
−α + r−β

1− 1
β r
−α ≤ 3

β
r−α. J

3.2 Functions With Multiple Output Bits
The output bit of a (q, t, ε)-resilient function f : {0, 1}r → {0, 1} applied to a (q, t)-non-
oblivious bit-fixing source is indeed ε-close to uniform, but, as shown by [30] even when
q = 1, ε cannot be smaller that ln r

r (and the simpler bound ε ≥ 1
r is almost trivial). We

show that when we output many bits, and allow o(log 1
ε ) entropy gap, we may obtain much

smaller error. We do that by exhibiting an entropy-resilient function based on a parallel
application of the (derandomized version of the) Ajtai-Linial function.
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A construction of an entropy-resilient function. Given a constant 0 < γ < 1 and integers
r ≥ m let Res : {0, 1}r → {0, 1} be the function guaranteed by Corollary 23 with respect to
γ. Define Σ = {0, 1}m and EntRes : Σr → Σ as follows. On input x ∈ Σr,

EntRes(x) = (Res(x(1)), . . . ,Res(x(m))),

where xi stands for the i-th column of x, when we view x as a r ×m table.

I Theorem 24. For every constant 0 < γ < 1 there exist constants 0 < α < 1 and c′ ≥ 1
such that the following holds. For every integers r, m ≤ rα/2, every ε > 0, and for every
integer t ≥ m · (log r)c′ , the function EntRes : Σr → Σ is (q = r1−γ , t, g, ε)-entropy-resilient
with entropy gap g = o(log(1/ε)).

The proof of Theorem 24 is done in two steps. First, in Section 3.2.1, we analyze the
theorem for the special case in which the distribution GX of the given non-oblivious Σ-fixing
source X is uniform. Then, based on that result, in Section 3.2.2 we prove Theorem 24.

3.2.1 The Uniform Case
In this section, we prove the following lemma.

I Lemma 25. Keeping the notations of Theorem 24, the function EntRes : Σr → Σ is
(q = r1−γ , g, ε)-entropy-resilient with entropy gap

g = cent1

ln 1
ε

ln ln 1
ε + cent2 ln r

= o(log(1/ε))

for some universal constant cent1 > 0 and a constant cent2 > 0 that depends only on γ.

Proof of Lemma 25. Let X be a (q = r1−γ)-non-oblivious Σ-fixing source. Let Rbad ⊆ [r]
be the set of bad players, and Ei the event that the values of the good players in X(i) do not
determine the value of Res. Note that we shall also denote Ei as an indicator for that event.

By Corollary 23, there exists constants 0 < α < β < 1 such that Pr [Ei = 1] ≤ 1
β · r

−α for
every i ∈ [m]. Observe that the random variables E1, . . . , Em are independent, as the value
of Ei depends only on the values of the good players in the i-th column, and by assumption
all these values are independent of the corresponding values in the other columns. Write
µ = m · 1

β · r
−α and note that since m ≤ rα/2, µ < 1. Set

c =
4 ln 1

ε

µ
· 1

ln ln 1
ε

µ

and observe that c > 1. By the Chernoff bound,

Pr
[
m∑
i=1

Ei > cµ

]
≤
(
ec−1

cc

)µ
≤ e− 1

2µc ln c ≤ ε,

where the last inequality follows from the fact that c ln c ≥ 2 ln 1
ε

µ .
By Corollary 23, for every i ∈ [m],

bias (Res(Xi) | Ei = 0) ≤ 3
β
· r−α.
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43:12 Two-Source Condensers with Low Error and Small Entropy Gap

Assume that the event
∑m
i=1Ei ≤ cµ holds, and let I ⊆ [m], |I| ≥ m − cµ be the set of

good columns I for which Ei = 0. For every w ∈ {0, 1}m, since the random variables
{EntRes(X)i}i∈I are independent, we have:

Pr[EntRes(X) = w] ≤ Pr[EntRes(X)I = wI ] ≤
(

1
2 + 3

β
· r−α

)m−cµ
≤ 2−m+cµe

6
β r
−αm ≤ 2−m+cµ210µ.

Now, we have

cµ+ 10µ ≤ 2cµ ≤
8 ln 1

ε

ln ln 1
ε + ln 1

µ

≤
8 ln 1

ε

ln ln 1
ε + 4

α ln r
= o

(
log 1

ε

)
.

We have shown that except with probability ε, the output EntRes(X) has min-entropy
m− o(log(1/ε)), as desired. More specifically, the min-entropy in the good columns alone is
at least m− o(log(1/ε)), and we stress that the good columns are not fixed but depend on
the sample itself. J

3.2.2 The Bounded-Independence Case – Proof of Theorem 24

Throughout this section, we use the same notations as in Lemma 25. We are given X that is
a (q, t)-non-oblivious Σ-fixing source. We use a similar approach to the one taken in [17].
For the sake of the proof, we:

Let GU be the distribution in which the good players are jointly uniform, and the bad
players are arbitrary.
Define a small-depth circuit C ′ that is related to EntRes so that H∞(EntRes(X)) ≥
H∞(C ′(X)).

We will show that C ′(X) and C ′(GU) are statistically close to each other. Finally,
the results of Section 3.2.1 proves that except for a small probability, H∞(C ′(GU)) ≥
m− o(log(1/ε)).

Proof of Theorem 24. Fix a (q, t)-non-oblivious Σ-fixing source X. Let GU be the distri-
bution where the good players are jointly uniform, and the bad players are arbitrary. We
construct a circuit C ′ : {0, 1}rm → {0, 1}m such that:

(C ′(x))i =
{

EntRes(x)i If Ei(x) = 0,
0 Otherwise.

Recall that Ei is fully determined by the good players, and so does EntRes(X)i when
Ei = 0. Hence, C ′ is fully determined by the good players.

We can write a small-depth circuit computing C ′. Let C be the depth-3 size r1/β circuit
that computes the function Res : {0, 1}r → {0, 1} as guaranteed by Theorem 22. Construct a
circuit for C ′ as follows:

For i ∈ [m] and b ∈ {0, 1} let Ci,b be a copy of C where we wire (xi)j for every good
player j ∈ [r], and the value b for every bad player.
The top part contains m comparators, outputting the output of Ci,0 if the output of Ci,0
is the same as the output of Ci,1, and 0 otherwise.
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The circuit has depth 4 and size s′′ = O(mr1/β) and its correctness is guaranteed by the fact
that Res is monotone (so it is sufficient to consider the case where the bad players voted
unanimously).

By Lemma 18, SD(C ′(GU), C ′(X)) ≤ 2
m− t

(log(mr))c′′ for some large enough universal
constant c′′ > 0. For every w ∈ {0, 1}m:

Pr [EntRes(X) = w] ≤ Pr [EntRes(X)I = wI ] = Pr [C ′(X)I = wI ]

≤ Pr [C ′(GU)I = wI ] + 2
m− t

(log(mr))c′′

≤ 2
−m+

8 ln 1
ε

ln ln 1
ε

+ 4
α

ln r + 2
m− t

(log(mr))c′′ ,

where in the last inequality we have used Lemma 25. We can set the constant c′ stated in
the theorem to be larger than c′′ and get that

Pr [EntRes(X) = w] ≤ 2 · 2
−m+

8 ln 1
ε

ln ln 1
ε

+ 4
α

ln r .

To conclude, note that the above holds with probability at least 1−ε, and then EntRes(X)
has min-entropy at least −1 +m− 8 ln 1

ε

ln ln 1
ε+ 4

α ln r = m− o(log(1/ε)), as desired. J

4 Low Error Two-Source Condensers With High Entropy Loss

Chattopadhyay and Zuckerman [17] showed a reduction from two independent sources to
non-oblivious bit-fixing sources. In Section 4.1 we extend this to many output bits and show
a reduction from two independent sources to non-oblivious Σ-fixing sources. Our reduction
is similar to the one in [17], and here:

We let the non-malleable extractors output m bits rather than a single bit, obtaining a
non-oblivious Σ-fixing source for Σ = {0, 1}m.
Correspondingly, we apply our entropy-resilient function EntRes whereas in [17] the
function Res is applied.

In Section 4.2 we use this together with the results of Section 3 to get a low error
two-source condenser with many output bits, yet still far from getting almost all of the
possible entropy from the two sources.

4.1 From Two Independent Sources to a Non-Oblivious Σ-Fixing
Source

In this section, we revisit the [17] transformation of two independent sources to a non-oblivious
bit-fixing source (i.e., with m = 1), and extend it to sources with several bits. Throughout
this section, we refer to cGUV, cnm as the constants that appear in Theorem 8 and Theorem 16,
respectively.

I Theorem 26. For every integers n, t,m, k, with n ≥ k ≥ (tm logn)5 and set Σ = {0, 1}m,
there exists a poly(n)-time computable function TwoSourcesToNOF : {0, 1}n × {0, 1}n → Σr,
where r = n2cGUV such that the following holds. Let X1, X2 be a pair of independent (n, k)-
sources. Then, with probability at least 1− 2−k/2 over x2 ∼ X2, the output

TwoSourcesToNOF(X1, x2)

is (n−mt)-close to an
(
r

1− 1
4cGUV , t

)
-non-oblivious Σ-fixing source.
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Proof. We start by setting the following parameters:

Setting of parameters.
Set εGUV = 1

n .
Set dGUV = cGUV log

(
n
εGUV

)
= 2cGUV logn.

Set εnm = 2−4mt(dGUV+logm).
Set dnm = cnmt

2 log2
(
n
εnm

)
.

Note that εnm = 2−Θ(mt logn) and that dnm = Θ(t4m2 log2 n).

Building blocks. For the construction of TwoSourcesToNOF, we make use of the following
ingredients:

Let Ext : {0, 1}n × {0, 1}dGUV → {0, 1}dnm be the (k/2, εGUV)-strong-seeded-extractor,
guaranteed by Theorem 8. One can verify that k/2 ≥ 2dnm as required by Theorem 8.
Let nmExt : {0, 1}n × {0, 1}dnm → {0, 1}m be the (k, εnm) t-non-malleable extractor,
guaranteed by Theorem 16. Note that k ≥ 3tm so the hypothesis of Theorem 16 is
met with our choice of parameters.

The construction. We identify [r] with {0, 1}dGUV . On inputs x1, x2 ∈ {0, 1}n, we define
TwoSourcesToNOF(x1, x2) to be the r ×m matrix whose i-th row is given by

TwoSourcesToNOF(x1, x2)i = nmExt(x1,Ext(x2, i)).

Analysis. Write Dnm = 2dnm and identify [Dnm] with {0, 1}dnm . Let G ⊆ [Dnm], |G| ≥
(1−√εnm)Dnm, be the set of good seeds guaranteed by Lemma 14. By Lemma 15, for
any distinct r1, . . . , rt ∈ G,

(nmExt(X1, r1), . . . , nmExt(X1, rt)) ≈t√εnm Utm.

Let S(X2) =
{

Ext(X2, 1), . . . ,Ext(X2, 2dnm)
}
. By Theorem 9,

Pr
x2∼X2

[|S(x2) ∩G| ≤ (1−
√
εnm − εGUV) · r] ≤ 2−k/2.

We say that x2 ∈ supp(X2) is good if it induces a good sample, that is if |S(x2) ∩G| >
(1 − √εnm − εGUV)r. Fix a good x2 and let Z = TwoSourcesToNOF(X1, x2). In the
good seeds, every t elements of Z are (t√εnm)-close to uniform, and there are at most
q ≤ (√εnm+εGUV)r bad rows. Applying Lemma 6, we get that Z is ζ = t

√
εnm(rm)mt-close

to a (q, t)-non-oblivious bit-fixing source. By our choice of εnm,

ζ = 2−2mt(dGUV+logm)2mt log(rm) ≤ 2−mt log r ≤ n−mt.

Further,

q ≤ (
√
εnm + εGUV)r ≤ 2εGUVr = 2r−

1
2cGUV

+1 ≤ r1− 1
4cGUV .

We now analyse the running-time. We first apply Ext to compute S(x2), which takes time
poly(n, log(1/εGUV)) = poly(n). Then, applying each nmExt takes poly(n, log(1/εnm)) =
poly(n,m, t, dGUV) = poly(n) time and we do it for r = poly(n) times. Overall, the
running time is poly(n), as required. In particular, as n ≥ k ≥ m, the running time is
also poly-logarithmic in the errors of the construction, 2−k/2 and n−mt. J
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4.2 Low Error Condensers With High Entropy Loss
I Theorem 27. There exists a universal constant c ≥ 1 such that the following holds.
For every integers n, k,m and every ε > 0 such that n ≥ k ≥ (m log(n/ε))c there exists a
poly(n)-time computable ((n, k), (n, k))→ε,2−k/2 (m,m− g)-condenser

Cond′ : {0, 1}n × {0, 1}n → {0, 1}m ,

that is strong in the second source, with entropy gap g = o(log(1/ε)).

Proof. We start by describing the construction of our condenser Cond′ and then turn to the
analysis. As usual, we let cGUV be the constant that is given by Theorem 8.

Setting of parameters.
Set γ = 1

4cGUV
and let 0 < α < β < 1 and c′ be the constants from Theorem 24 with

respect to this γ.
Set r = n2cGUV .
Set t = m · (log(r/ε))c′ .
Set c, the constant stated in this theorem, to c = max(10c′, 2/α).

Building blocks.
Let TwoSourcesToNOF : {0, 1}n ×{0, 1}n → {0, 1}r×m be the function that is given by
Theorem 26. We are about to apply TwoSourcesToNOF to (n, k)-sources, and indeed
k is large enough to satisfy the hypothesis of Theorem 26.
Let EntRes : {0, 1}r×m → {0, 1}m be the function from Theorem 24 when set with the
parameter γ as defined above. Note that the hypothesis of Theorem 24 holds, as since
c ≥ 2/α we have that m < rα/2, and t is large enough.

The construction. On inputs x1, x2 ∈ {0, 1}n, we define

Cond′(x1, x2) = EntRes (TwoSourcesToNOF(x1, x2)) .

Analysis. Clearly, EntRes is computable in poly(m, r) = poly(n) time. Let X1, X2 be
a pair of independent (n, k)-sources. By Theorem 26, except with probability 2−k/2
over x2 ∼ X2, the output TwoSourcesToNOF(X1, x2) is n−mt-close to an (r1−γ , t)-
non-oblivious bit-fixing source. For every x2 for which this event holds, the output
EntRes(TwoSourcesToNOF(X1, x2)) is (n−mt + ε)-close to an (m,m− o(log(1/ε)))-source,
and n−mt ≤ ε. J

5 Deterministically Condensing a Single Block-Source

A distribution (X,Y ) is a blockwise source if both X has sufficient min-entropy and also
for every x ∈ supp(X), (Y | X = x) has sufficient min-entropy. In this section we show how
to deterministically condense a blockwise source into a source having very small entropy
gap, using the connection between condensers with small entropy gap and samplers with
multiplicative error and ideas from [43]. In the next section we will use it to significantly
increase the output length of the condenser from Section 4.2.

I Lemma 28 (Deterministically condensing a blockwise source). Let X be an (n, k)-source.
Let Y be a d-bit random variable (that may depend on X) such that for every x ∈ supp(X),
the random variable (Y | X = x) is εB-close to a (d, d− g)-source.

Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (kExt, εExt)-seeded-extractor. Suppose k ≥
kExt + log(1/εExt). Then, Ext(X,Y ) is (2g+2εExt + 2εB)-close to an (m,m− g − 1)-source.
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Proof. Fix any T ⊆ {0, 1}m. Define the set

OverHitT =
{
x ∈ {0, 1}n : Pr

y∼Ud
[Ext(x, y) ∈ T ] > µ(T ) + εExt

}
.

B Claim 29. |OverHitT | < 2kExt .

Proof. Suppose towards a contradiction that |OverHitT | ≥ 2kExt and let B denote the random
variable that is uniform over the set OverHitT . Since B has min-entropy at least kExt, the
output Ext(B,Ud) is εExt-close to uniform, and therefore Prx∼B,y∼Ud [Ext(x, y) ∈ T ] ≤ µ(T )+
εExt. This stands in contradiction to the definition of B. C

Now,

Pr [Ext(X,Y ) ∈ T ] ≤ Pr[Ext(X,Y ) ∈ T | X /∈ OverHitT ] + Pr[X ∈ OverHitT ].

By Claim 29, Pr[X ∈ OverHitT ] ≤ 2kExt−k. Also, for every x /∈ OverHitT let

GYx =
{
y ∈ {0, 1}d : Ext(x, y) ∈ T

}
.

By definition, µ(GYx) ≤ µ(T ) + εExt. Also, Y |(X = x) is εB-close to some random variable
Y ′x having support size at least 2d−g. Therefore,

Pr
y∼(Y |X=x)

[Ext(x, y) ∈ T ] = Pr
y∼(Y |X=x)

[y ∈ GYx] ≤ εB + Pr[Y ′x ∈ GYx]

≤ εB + |GYx|2d−g ≤ εB + 2g(µ(T ) + εExt).

Thus,

Pr [Ext(X,Y ) ∈ T ] ≤ Pr[Ext(X,Y ) ∈ T | X /∈ OverHitT ] + Pr[X ∈ OverHitT ]
≤ 2gµ(T ) + 2gεExt + εB + 2kExt−k ≤ 2gµ(T ) + (2g + 1)εExt + εB.

But,

B Claim 30. Let Z be a random variable over n-bit strings such that for every T ⊆ {0, 1}n,
Pr[Z ∈ T ] ≤ 2gµ(T ) + ε. Then, Z is 2ε-close to an (n, n− g − 1)-source.

Proof. Set H =
{
x : Pr[Z = x] > 2−(n−g−1)} . On the one hand,

Pr [Z ∈ H] =
∑
x∈H

Pr [Z = x] ≥ 2g+1µ(H).

On the other hand, by our assumption, Pr [Z ∈ H] ≤ 2gµ(H) + ε. Together, we get that
2gµ(H) ≤ ε. Thus, Pr [Z ∈ H] ≤ 2ε. As H are all the heavy elements, we conclude that Z is
2ε-close to a distribution with n− g − 1 min-entropy. C

We can therefore summarize that Ext(X,Y ) is (2g+2εExt + 2εB)-close to an (m,m− g− 1)-
source. J
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6 Low Error Two-Source Condensers

In this section we will construct our low error condenser, with small entropy gap outputting
many bits, by exploiting the block-wise structure of our previous construction. Roughly
speaking, we are close to a scenario in which X2 has sufficient min-entropy and also for every
fixing of x2 ∈ supp(X2), the random variable Cond′(X1, x2) is close to uniform. The result
of Section 5 can then be applied – allowing us to extract almost all the entropy from one of
the sources. To that end, we prove the following theorem, which readily implies Theorem 3.

I Theorem 31 (Main theorem). There exists a universal constant c ≥ 1 such that the
following holds. For every integers n ≥ k and every ε > 0 such that k ≥ logc(n/ε) there
exists a poly(n, log(1/ε))-time computable ((n, k), (n, k))→ε (m,m−g) two-source condenser

Cond : {0, 1}n × {0, 1}n → {0, 1}m

with m = k − 5 log(1/ε)−O(1) and g = o(log(1/ε)).

Proof. We start by setting some parameters.
Parameters.

Set εCond′ = ε/8.
Set εExt = ε2/32.
Set kExt = k − log(2/ε).
Set dExt = c′ logn · log(n/εExt) where c′ is the constant that is given by Theorem 10.

For the construction we make use of the following building blocks.
Let Ext : {0, 1}n × {0, 1}dExt → {0, 1}m be the (kExt, εExt)-strong-seeded-extractor that
is given by Theorem 10. By that theorem, m = kExt − 2 log(1/εExt)−O(1).
Let Cond′ : {0, 1}n×{0, 1}n → {0, 1}dExt be the ((n, k), (n, k))→εCond′ ,2−k/2 (dExt, dExt−
g′)-condenser, strong in the second source, that is given by Theorem 27, with
g′ = o(log(1/εCond′)). Note that our choice of parameters satisfies the hypothesis
of Theorem 27 for a large enough constant c.

The construction. On inputs x1, x2 ∈ {0, 1}n, we define

Cond(x1, x2) = Ext(x2,Cond′(x1, x2)).

Analysis. Let X1, X2 be a pair of independent (n, k)-sources. By Theorem 27, with probabil-
ity at least 1− 2−k/2 over x2 ∼ X2, the random variable Cond′(X1, x2) is εCond′ -close to a
(d, d− g′)-source. Lemma 28 implies that Ext(X2,Cond′(X1, X2)) is 2−k/2 + (2g′+2εExt +
2εCond′)-close to an (m,m− g′ − 1)-source.
By our choice of parameters, 2−k/2 + 2g′+1εExt + 2εCond′ ≤ ε. Note that k − m =
log(2/ε) + 2 log(1/εExt) = 5 log(1/ε) +O(1). The running-time of the construction readily
follows from the running-times of Cond′ and Ext. J
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arXiv:math/0601651.

6 B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence:
New constructions of condensers, Ramsey graphs, dispersers, and extractors. Journal of the
ACM (JACM), 57(4):20, 2010.

7 B. Barak, A. Rao, R. Shaltiel, and A. Wigderson. 2-source dispersers for no(1) entropy, and
Ramsey graphs beating the Frankl-Wilson construction. Annals of Mathematics, 176(3):1483–
1544, 2012.

8 A. Ben-Aroya, E. Chattopadhyay, D. Doron, X. Li, and A. Ta-Shma. A New Approach for
Constructing Low-Error, Two-Source Extractors. In LIPIcs-Leibniz International Proceedings
in Informatics. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

9 A. Ben-Aroya, D. Doron, and A. Ta-Shma. An efficient reduction from two-source to non-
malleable extractors: achieving near-logarithmic min-entropy. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1185–1194. ACM,
2017.

10 A. Ben-Aroya, D. Doron, and A. Ta-Shma. Near-Optimal Erasure List-Decodable Codes. In
Electronic Colloquium on Computational Complexity (ECCC), 2018.

11 M. Ben-Or and N. Linial. Collective coin flipping, robust voting schemes and minima of
Banzhaf values. In Proceedings of the 26th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 408–416. IEEE, 1985.

12 E. Ben-Sasson and N. Zewi. From affine to two-source extractors via approximate duality.
In Proceedings of the 43rd annual ACM Symposium on Theory of computing (STOC), pages
177–186. ACM, 2011.

13 J. Bourgain. More on the sum-product phenomenon in prime fields and its applications.
International Journal of Number Theory, 1(01):1–32, 2005.

14 M. Braverman. Polylogarithmic independence fools AC0 circuits. Journal of the ACM (JACM),
57(5):28, 2010.

15 E. Chattopadhyay, V. Goyal, and X. Li. Non-malleable extractors and codes, with their many
tampered extensions. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing (STOC), pages 285–298. ACM, 2016.

16 E. Chattopadhyay and X. Li. Explicit Non-Malleable Extractors, Multi-Source Extractors and
Almost Optimal Privacy Amplification Protocols. In Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 158–167. IEEE, 2016.

17 E. Chattopadhyay and D. Zuckerman. Explicit two-source extractors and resilient functions.
In Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC), pages
670–683. ACM, 2016.

18 B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

19 F. R. K. Chung. A note on constructive methods for Ramsey numbers. Journal of Graph
Theory, 5(1):109–113, 1981.

20 G. Cohen. Local correlation breakers and applications to three-source extractors and mergers.
In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 845–862. IEEE, 2015.

21 G. Cohen. Making the Most of Advice: New Correlation Breakers and Their Applications.
In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 188–196. IEEE, 2016.

22 G. Cohen. Two-source extractors for quasi-logarithmic min-entropy and improved privacy
amplification protocols. In Electronic Colloquium on Computational Complexity (ECCC),
2016.

http://arxiv.org/abs/math/0601651


A. Ben-Aroya, G. Cohen, D. Doron, and A. Ta-Shma 43:19

23 G. Cohen. Two-source dispersers for polylogarithmic entropy and improved Ramsey graphs. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 278–284. ACM, 2016.

24 G. Cohen and L. Schulman. Extractors for Near Logarithmic Min-Entropy. In Proceedings
of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), page 14,
2016.

25 P. Frankl. A constructive lower bound for Ramsey numbers. Ars Combinatoria, 3(297-302):28,
1977.

26 P. Frankl and R. M. Wilson. Intersection theorems with geometric consequences. Combinatorica,
1(4):357–368, 1981.

27 V. Grolmusz. Low rank co-diagonal matrices and Ramsey graphs. Journal of combinatorics,
7(1):R15–R15, 2001.

28 V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness extractors
from Parvaresh–Vardy codes. Journal of the ACM, 56(4):20, 2009.

29 P. Harsha and S. Srinivasan. On Polynomial Approximations to AC0. Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2016.

30 K. Kahn, G. Kalai, and N. Linial. The influence of variables on Boolean functions. In Proceedings
of the 29th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
68–80. IEEE, 1988.

31 Mark Lewko. An explicit two-source extractor with min-entropy near 4/9. arXiv preprint,
2018. arXiv:1804.05451.

32 X. Li. Extractors for a constant number of independent sources with polylogarithmic min-
entropy. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 100–109, 2013.

33 X. Li. New independent source extractors with exponential improvement. In Proceedings of
the 45th annual ACM Symposium on Theory of Computing (STOC), pages 783–792. ACM,
2013.

34 X. Li. Three-source extractors for polylogarithmic min-entropy. In Proceedings of the 56th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 863–882. IEEE,
2015.

35 X. Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 1144–1156. ACM, 2017.

36 X. Li. Non-malleable extractors and non-malleable codes: Partially optimal constructions. In
Electronic Colloquium on Computational Complexity (ECCC), 2018.

37 R. Meka. Explicit resilient functions matching Ajtai-Linial. In Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1132–1148. SIAM, 2017.

38 Zs. Nagy. A constructive estimation of the Ramsey numbers. Mat. Lapok, 23:301–302, 1975.
39 M. Naor. Constructing Ramsey graphs from small probability spaces. IBM Research Report

RJ, 8810, 1992.
40 A. Rao. A 2-source almost-extractor for linear entropy. In Approximation, Randomization

and Combinatorial Optimization. Algorithms and Techniques, pages 549–556. Springer, 2008.
41 A. Rao. Extractors for a constant number of polynomially small min-entropy independent

sources. SIAM Journal on Computing, 39(1):168–194, 2009.
42 R. Raz. Extractors with weak random seeds. In Proceedings of the 37th annual ACM Symposium

on Theory of Computing (STOC), pages 11–20. ACM, 2005.
43 R. Raz, O. Reingold, and S. Vadhan. Error reduction for extractors. In Proceedings of the

40th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 191–201.
IEEE, 1999.

APPROX/RANDOM 2019

http://arxiv.org/abs/1804.05451


43:20 Two-Source Condensers with Low Error and Small Entropy Gap

44 A. Tal. Tight bounds on the Fourier spectrum of AC0. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 79. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

45 John von Neumann. Various techniques used in connection with random digits. John von
Neumann, Collected Works, 5:768–770, 1963.

46 D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Algorithms,
11(4):345–367, 1997.

47 D. Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3:103–128, 2007.


	Introduction
	Resilient Functions – The Barrier for Obtaining Extractors With Low Error
	Entropy-Resilient Functions
	The Two-Source Condensers We Obtain
	Seedless Condensers for a Single Block-Source
	A Three-Source Extractor 

	Preliminaries
	Random Variables, Min-Entropy
	Limited Independence
	Seeded Extractors
	Two-Source Condensers
	Non-Malleable Extractors
	Fooling AC Circuits

	Entropy-Resilient Functions
	Functions With One Output Bit
	Functions With Multiple Output Bits
	The Uniform Case
	The Bounded-Independence Case – Proof of Theorem 24


	Low Error Two-Source Condensers With High Entropy Loss
	From Two Independent Sources to a Non-Oblivious Sigma-Fixing Source
	Low Error Condensers With High Entropy Loss

	Deterministically Condensing a Single Block-Source
	Low Error Two-Source Condensers

