1,269 research outputs found

    Stagnation point reverse flow combustor for a combustion system

    Get PDF
    A combustor assembly includes a combustor vessel having a wall, a proximate end defining an opening and a closed distal end opposite said proximate end. A manifold is carried by the proximate end. The manifold defines a combustion products exit. The combustion products exit being axially aligned with a portion of the closed distal end. A plurality of combustible reactant ports is carried by the manifold for directing combustible reactants into the combustion vessel from the region of the proximate end towards the closed distal end

    Using a probabilistic approach to derive a two-phase model of flow-induced cell migration

    Full text link
    Interstitial fluid flow is a feature of many solid tumours. In vitro experiments have shown that such fluid flow can direct tumour cell movement upstream or downstream depending on the balance between the competing mechanisms of tensotaxis and autologous chemotaxis. In this work we develop a probabilistic-continuum, two-phase model for cell migration in response to interstitial flow. We use a Fokker-Planck type equation for the cell-velocity probability density function, and model the flow-dependent mechanochemical stimulus as a forcing term which biases cell migration upstream and downstream. Using velocity-space averaging, we reformulate the model as a system of continuum equations for the spatio-temporal evolution of the cell volume fraction and flux, in response to forcing terms which depend on the local direction and magnitude of the mechanochemical cues. We specialise our model to describe a one-dimensional cell layer subject to fluid flow. Using a combination of numerical simulations and asymptotic analysis, we delineate the parameter regime where transitions from downstream to upstream cell migration occur. As has been observed experimentally, the model predicts downstream-oriented, chemotactic migration at low cell volume fractions, and upstream-oriented, tensotactic migration at larger volume fractions. We show that the locus of the critical volume fraction, at which the system transitions from downstream to upstream migration, is dominated by the ratio of the rate of chemokine secretion and advection. Our model predicts that, because the tensotactic stimulus depends strongly on the cell volume fraction, upstream migration occurs only transiently when the cells are initially seeded, and transitions to downstream migration occur at later times due to the dispersive effect of cell diffusion.Comment: 20 pages, 6 figures. Submitted to Biophysical Journa

    Potential of new isolates of Dunaliella Salina for natural β-Carotene production

    Get PDF
    The halotolerant microalga Dunaliella salina has been widely studied for natural β-carotene production. This work shows biochemical characterization of three newly isolated Dunaliella salina strains, DF15, DF17, and DF40, compared with D. salina CCAP 19/30 and D. salina UTEX 2538 (also known as D. bardawil). Although all three new strains have been genetically characterized as Dunaliella salina strains, their ability to accumulate carotenoids and their capacity for photoprotection against high light stress are different. DF15 and UTEX 2538 reveal great potential for producing a large amount of β-carotene and maintained a high rate of photosynthesis under light of high intensity; however, DF17, DF40, and CCAP 19/30 showed increasing photoinhibition with increasing light intensity, and reduced contents of carotenoids, in particular β-carotene, suggesting that the capacity of photoprotection is dependent on the cellular content of carotenoids, in particular β-carotene. Strong positive correlations were found between the cellular content of all-trans β-carotene, 9-cis β-carotene, all-trans α-carotene and zeaxanthin but not lutein in the D. salina strains. Lutein was strongly correlated with respiration in photosynthetic cells and strongly related to photosynthesis, chlorophyll and respiration, suggesting an important and not hitherto identified role for lutein in coordinated control of the cellular functions of photosynthesis and respiration in response to changes in light conditions, which is broadly conserved in Dunaliella strains. Statistical analysis based on biochemical data revealed a different grouping strategy from the genetic classification of the strains. The significance of these data for strain selection for commercial carotenoid production is discussed

    Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study

    Get PDF
    Through long-range transport of dust, the North-African desert supplies essential minerals to the Amazon rain forest. Since North African dust reaches South America mostly during the Northern Hemisphere winter, the dust sources active during winter are the main contributors to the forest. Given that the Bodélé depression area in southwestern Chad is the main winter dust source, a close link is expected between the Bodélé emission patterns and volumes and the mineral supply flux to the Amazon. <br><br> Until now, the particular link between the Bodélé and the Amazon forest was based on sparse satellite measurements and modeling studies. In this study, we combine a detailed analysis of space-borne and ground data with reanalysis model data and surface measurements taken in the central Amazon during the Amazonian Aerosol Characterization Experiment (AMAZE-08) in order to explore the validity and the nature of the proposed link between the Bodélé depression and the Amazon forest. <br><br> This case study follows the dust events of 11–16 and 18–27 February 2008, from the emission in the Bodélé over West Africa (most likely with contribution from other dust sources in the region) the crossing of the Atlantic Ocean, to the observed effects above the Amazon canopy about 10 days after the emission. The dust was lifted by surface winds stronger than 14 m s<sup>−1</sup>, usually starting early in the morning. The lofted dust, mixed with biomass burning aerosols over Nigeria, was transported over the Atlantic Ocean, and arrived over the South American continent. The top of the aerosol layer reached above 3 km, and the bottom merged with the boundary layer. The arrival of the dusty air parcel over the Amazon forest increased the average concentration of aerosol crustal elements by an order of magnitude

    TRIO: Turbulent Response in Oxygen

    Get PDF
    This project was designed to build on the results from the successful launch of the Turbulent Oxygen Mixing Experiment (TOMEX) mother-daughter (instrumented and chemical-release) payload (21.126) that was launched in October 2000 from the White Sands Missile Range. The overall science objective was to investigate the evolution of the atmospheric response. at altitudes between 80 and 120 km, to the presence of unstable regions with vertical scales of the order of 1 to 10 km. TRIO was designed to use Na lidar measurements from the MAUUMALT observation on MAUI with a launch of a payload from Pacific Missile Range Facility (PMRF), located on Kauai. During this project, Aerospace participated in a Mission Initiation Conference. put together a science requirements document. performed a site visit to PMRF. prepared a CDR document. and developed a production and calibration procedure for one of the payload instruments. the 3-channel photometer. Unfortunately. NASA decided to terminate the program because of unforeseen (by NASA) range costs. This CDR document represents our view of this project at termination and provides a roadmap to perform this experiment should it be proposed again

    Interaction-powered supernovae: Rise-time vs. peak-luminosity correlation and the shock-breakout velocity

    Get PDF
    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ~10^4 km/s). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events.Comment: Accepted to ApJ, 6 page

    Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion

    Full text link
    We present seven epochs of spectropolarimetry of the Type IIb supernova (SN) 2011dh in M51, spanning 86 days of its evolution. The first epoch was obtained 9 days after the explosion, when the photosphere was still in the depleted hydrogen layer of the stripped-envelope progenitor. Continuum polarization is securely detected at the level of P~0.5% through day 14 and appears to diminish by day 30, which is different from the prevailing trends suggested by studies of other core-collapse SNe. Time-variable modulations in P and position angle are detected across P-Cygni line features. H-alpha and HeI polarization peak after 30 days and exhibit position angles roughly aligned with the earlier continuum, while OI and CaII appear to be geometrically distinct. We discuss several possibilities to explain the evolution of the continuum and line polarization, including the potential effects of a tidally deformed progenitor star, aspherical radioactive heating by fast-rising plumes of Ni-56 from the core, oblique shock breakout, or scattering by circumstellar material. While these possibilities are plausible and guided by theoretical expectations, they are not unique solutions to the data. The construction of more detailed hydrodynamic and radiative-transfer models that incorporate complex aspherical geometries will be required to further elucidate the nature of the polarized radiation from SN 2011dh and other Type IIb supernovae.Comment: Post-proof edit. Accepted to MNRAS 2015 Aug 1

    Precursors prior to Type IIn supernova explosions are common: precursor rates, properties, and correlations

    Get PDF
    There is a growing number of supernovae (SNe), mainly of Type IIn, which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to some poorly charted phenomena in the final stages of stellar evolution. Here we present a sample of 16 SNe IIn for which we have Palomar Transient Factory (PTF) observations obtained prior to the SN explosion. By coadding these images taken prior to the explosion in time bins, we search for precursor events. We find five Type IIn SNe that likely have at least one possible precursor event, three of which are reported here for the first time. For each SN we calculate the control time. Based on this analysis we find that precursor events among SNe IIn are common: at the one-sided 99% confidence level, more than 50% of SNe IIn have at least one pre-explosion outburst that is brighter than absolute magnitude -14, taking place up to 1/3 yr prior to the SN explosion. The average rate of such precursor events during the year prior to the SN explosion is likely larger than one per year, and fainter precursors are possibly even more common. We also find possible correlations between the integrated luminosity of the precursor, and the SN total radiated energy, peak luminosity, and rise time. These correlations are expected if the precursors are mass-ejection events, and the early-time light curve of these SNe is powered by interaction of the SN shock and ejecta with optically thick circumstellar material.Comment: 15 pages, 20 figures, submitted to Ap
    corecore