1,318 research outputs found

    Electrically Enhanced Free Dendrite Growth in Polar and Non-polar Systems

    Full text link
    We describe the electrically enhanced growth of needle crystals from the vapor phase, for which there exists a morphological instability above a threshold applied potential. Our improved theoretical treatment of this phenomenon shows that the instability is present in both polar and non-polar systems, and we provide an extension of solvability theory to include electrical effects. We present extensive experimental data for ice needle growth above the electrical threshold, where at T=5T=-5C high-velocity shape-preserving growth is observed. These data indicate that the needle tip assumes an effective radius} RR^{\ast} which is nearly independent of both supersaturation and the applied potential. The small scale of RR^{\ast} and its response to chemical additives suggest that the needle growth rate is being limited primarily by structural instabilities, possibly related to surface melting. We also demonstrate experimentally that non-polar systems exhibit this same electrically induced morphological instability

    A New Method of Marking Fresh-water Mussels for Field Study

    Get PDF
    A review of previously used methods of marking mussels and a description of a new system developed for field use are presented. A code numbering system, utilizing holes drilled into the shell, is described and evaluated

    Cost–benefit analysis and efficient water allocation in Cyprus

    Get PDF
    The scarcity of water resources in both arid and temperate countries alike is one of the most pervasive natural resource allocation problems facing water users and policy-makers. In arid countries this problem is faced each day in the myriad of conflicts that surround its use.Water scarcity is a fact with which all countries have to become increasingly involved. Water scarcity occurs across many dimensions. First, there is growing demand for water in residential, industrial and agricultural sectors stemming largely from population and economic growth. Secondly, supply-side augmentation options have become increasingly constrained and restrictively costly in many countries. In combination, demand growth and supply-side interventions have stretched current water availability to its hydrological limits. In addition to these quantity constraints, the limits to the assimilative capacity of water resources for human and industrial waste have been reached in many places, and the quality of freshwater has been degraded (Winpenny, 1994)

    Cost–benefit analysis and efficient water allocation in Cyprus

    Get PDF
    The scarcity of water resources in both arid and temperate countries alike is one of the most pervasive natural resource allocation problems facing water users and policy-makers. In arid countries this problem is faced each day in the myriad of conflicts that surround its use.Water scarcity is a fact with which all countries have to become increasingly involved. Water scarcity occurs across many dimensions. First, there is growing demand for water in residential, industrial and agricultural sectors stemming largely from population and economic growth. Secondly, supply-side augmentation options have become increasingly constrained and restrictively costly in many countries. In combination, demand growth and supply-side interventions have stretched current water availability to its hydrological limits. In addition to these quantity constraints, the limits to the assimilative capacity of water resources for human and industrial waste have been reached in many places, and the quality of freshwater has been degraded (Winpenny, 1994)

    Repair of a Mutation Disrupting the Guinea Pig Cytomegalovirus Pentameric Complex Acquired during Fibroblast Passage Restores Pathogenesis in Immune-Suppressed Guinea Pigs and in the Context of Congenital Infection

    Get PDF
    ABSTRACT Guinea pig cytomegalovirus (GPCMV) provides a valuable model for congenital cytomegalovirus transmission. Salivary gland (SG)-passaged stocks of GPCMV are pathogenic, while tissue culture (TC) passage in fibroblasts results in attenuation. Nonpathogenic TC-derived virus N13R10 (cloned as a bacterial artificial chromosome [BAC]) has a 4-bp deletion that disrupts GP129 , which encodes a subunit of the GPCMV pentameric complex (PC) believed to govern viral entry into select cell types, and GP130 , an overlapping open reading frame (ORF) of unknown function. To determine if this deletion contributes to attenuation of N13R10, markerless gene transfer in Escherichia coli was used to construct virus r129, a variant of N13R10 in which the 4-bp deletion is repaired. Virions from r129 were found to contain GP129 as well as two other PC subunit proteins, GP131 and GP133, whereas these three PC subunits were absent from N13R10 virions. Replication of r129 in fibroblasts appeared unaltered compared to that of N13R10. However, following experimental challenge of immunocompromised guinea pigs, r129 induced significant weight loss, longer duration of viremia, and dramatically higher (up to 1.5 × 10 6 -fold) viral loads in blood and end organs compared to N13R10. In pregnant guinea pigs, challenge with doses of r129 virus of ≥5 × 10 6 PFU resulted in levels of maternal viremia, congenital transmission, pup viral loads, intrauterine growth restriction, and pup mortality comparable to that induced by pathogenic SG virus, although higher doses of r129 were required. These results suggest that the GP129-GP130 mutation is a significant contributor to attenuation of N13R10, likely by abrogating expression of a functional PC. IMPORTANCE Tissue culture adaptation of cytomegaloviruses rapidly selects for mutations, deletions, and rearrangements in the genome, particularly for viruses passaged in fibroblast cells. Some of these mutations are focused in the region of the genome encoding components of the pentameric complex (PC), in particular homologs of human cytomegalovirus (HCMV) proteins UL128, UL130, and UL131A. These mutations can attenuate the course of infection when the virus is reintroduced into animals for vaccine and pathogenesis studies. This study demonstrates that a deletion that arose during the process of tissue culture passage can be repaired, with subsequent restoration of pathogenicity, using BAC-based mutagenesis. Restoration of pathogenicity by repair of a frameshift mutation in GPCMV gene GP129 using this approach provides a valuable genetic platform for future studies using the guinea pig model of congenital CMV infection
    corecore