2,178 research outputs found

    Testing formula satisfaction

    Get PDF
    We study the query complexity of testing for properties defined by read once formulae, as instances of massively parametrized properties, and prove several testability and non-testability results. First we prove the testability of any property accepted by a Boolean read-once formula involving any bounded arity gates, with a number of queries exponential in \epsilon and independent of all other parameters. When the gates are limited to being monotone, we prove that there is an estimation algorithm, that outputs an approximation of the distance of the input from satisfying the property. For formulae only involving And/Or gates, we provide a more efficient test whose query complexity is only quasi-polynomial in \epsilon. On the other hand we show that such testability results do not hold in general for formulae over non-Boolean alphabets; specifically we construct a property defined by a read-once arity 2 (non-Boolean) formula over alphabets of size 4, such that any 1/4-test for it requires a number of queries depending on the formula size

    Systems of Accumulation and the Evolving MEC

    Get PDF
    The limitations of the Developmental State Paradigm were discussed in the introductory chapter to this volume. This chapter offers an alternative approach to the DSP through use of the notion of systems of (capital) accumulation and its specific application to South Africa’s evolving political economy, which we characterise as the ‘Minerals-Energy Complex’ (MEC) following Fine and Rustomjee (1996)

    Biased random walks on complex networks: the role of local navigation rules

    Full text link
    We study the biased random walk process in random uncorrelated networks with arbitrary degree distributions. In our model, the bias is defined by the preferential transition probability, which, in recent years, has been commonly used to study efficiency of different routing protocols in communication networks. We derive exact expressions for the stationary occupation probability, and for the mean transit time between two nodes. The effect of the cyclic search on transit times is also explored. Results presented in this paper give the basis for theoretical treatment of the transport-related problems on complex networks, including quantitative estimation of the critical value of the packet generation rate.Comment: 5 pages (Phys. Rev style), 3 Figure

    Efficient Immunization Strategies for Computer Networks and Populations

    Full text link
    We present an effective immunization strategy for computer networks and populations with broad and, in particular, scale-free degree distributions. The proposed strategy, acquaintance immunization, calls for the immunization of random acquaintances of random nodes (individuals). The strategy requires no knowledge of the node degrees or any other global knowledge, as do targeted immunization strategies. We study analytically the critical threshold for complete immunization. We also study the strategy with respect to the susceptible-infected-removed epidemiological model. We show that the immunization threshold is dramatically reduced with the suggested strategy, for all studied cases.Comment: Revtex, 5 pages, 4 ps fig

    Greedy Connectivity of Geographically Embedded Graphs

    Full text link
    We introduce a measure of {\em greedy connectivity} for geographical networks (graphs embedded in space) and where the search for connecting paths relies only on local information, such as a node's location and that of its neighbors. Constraints of this type are common in everyday life applications. Greedy connectivity accounts also for imperfect transmission across established links and is larger the higher the proportion of nodes that can be reached from other nodes with a high probability. Greedy connectivity can be used as a criterion for optimal network design

    Universal statistical properties of poker tournaments

    Get PDF
    We present a simple model of Texas hold'em poker tournaments which retains the two main aspects of the game: i. the minimal bet grows exponentially with time; ii. players have a finite probability to bet all their money. The distribution of the fortunes of players not yet eliminated is found to be independent of time during most of the tournament, and reproduces accurately data obtained from Internet tournaments and world championship events. This model also makes the connection between poker and the persistence problem widely studied in physics, as well as some recent physical models of biological evolution, and extreme value statistics.Comment: Final longer version including data from Internet and WPT tournament

    Popularity-Driven Networking

    Full text link
    We investigate the growth of connectivity in a network. In our model, starting with a set of disjoint nodes, links are added sequentially. Each link connects two nodes, and the connection rate governing this random process is proportional to the degrees of the two nodes. Interestingly, this network exhibits two abrupt transitions, both occurring at finite times. The first is a percolation transition in which a giant component, containing a finite fraction of all nodes, is born. The second is a condensation transition in which the entire system condenses into a single, fully connected, component. We derive the size distribution of connected components as well as the degree distribution, which is purely exponential throughout the evolution. Furthermore, we present a criterion for the emergence of sudden condensation for general homogeneous connection rates.Comment: 5 pages, 2 figure

    Ring structures and mean first passage time in networks

    Get PDF
    In this paper we address the problem of the calculation of the mean first passage time (MFPT) on generic graphs. We focus in particular on the mean first passage time on a node 's' for a random walker starting from a generic, unknown, node 'x'. We introduce an approximate scheme of calculation which maps the original process in a Markov process in the space of the so-called rings, described by a transition matrix of size O(ln N / ln X ln N / ln), where N is the size of the graph and the average degree in the graph. In this way one has a drastic reduction of degrees of freedom with respect to the size N of the transition matrix of the original process, corresponding to an extremely-low computational cost. We first apply the method to the Erdos-Renyi random graph for which the method allows for almost perfect agreement with numerical simulations. Then we extend the approach to the Barabasi-Albert graph, as an example of scale-free graph, for which one obtains excellent results. Finally we test the method with two real world graphs, Internet and a network of the brain, for which we obtain accurate results.Comment: 8 pages, 8 figure

    Deciphering Network Community Structure by Surprise

    Get PDF
    The analysis of complex networks permeates all sciences, from biology to sociology. A fundamental, unsolved problem is how to characterize the community structure of a network. Here, using both standard and novel benchmarks, we show that maximization of a simple global parameter, which we call Surprise (S), leads to a very efficient characterization of the community structure of complex synthetic networks. Particularly, S qualitatively outperforms the most commonly used criterion to define communities, Newman and Girvan's modularity (Q). Applying S maximization to real networks often provides natural, well-supported partitions, but also sometimes counterintuitive solutions that expose the limitations of our previous knowledge. These results indicate that it is possible to define an effective global criterion for community structure and open new routes for the understanding of complex networks.Comment: 7 pages, 5 figure

    Relative efficiency of fishing gears and investigation of resource availability in tropical demersal scalefish fisheries FRDC REPORT – PROJECT 2006/031

    Get PDF
    This project identified that there is substantial spatial variation in the demersal fish assemblages in the NDSF with some species more abundant in the north of the fishery and others in the south. At finer scales within sites and depths there is spatial variation associated with different habitats (e.g. sand vs sponge gardens or reef)
    • …
    corecore