We present a simple model of Texas hold'em poker tournaments which retains
the two main aspects of the game: i. the minimal bet grows exponentially with
time; ii. players have a finite probability to bet all their money. The
distribution of the fortunes of players not yet eliminated is found to be
independent of time during most of the tournament, and reproduces accurately
data obtained from Internet tournaments and world championship events. This
model also makes the connection between poker and the persistence problem
widely studied in physics, as well as some recent physical models of biological
evolution, and extreme value statistics.Comment: Final longer version including data from Internet and WPT tournament