99 research outputs found

    Oxygen producing microscale spheres affect cell survival in conditions of oxygen-glucose deprivation in a cell specific manner: implications for cell transplantation

    Get PDF
    This study outlines the synthesis of microscale oxygen producing spheres, which, when used in conjunction with catalase, can raise the dissolved oxygen content of cell culture media for 16–20 hours. In conditions of oxygen and glucose deprivation, designed to mimic the graft environment in vivo, the spheres rescue SH-SY5Y cells and meschymal stem cells, showing that oxygen producing biomaterials may hold potential to improve the survival of cells post-transplantation

    Static and dynamic 3D culture of neural precursor cells on macroporous cryogel microcarriers

    Get PDF
    Neural precursor cells have been much studied to further our understanding of the far-reaching and controversial question of adult neurogenesis. Currently, differentiation of primary neural precursor cells from the mouse dentate gyrus via 2-dimentional in vitro culture yields low numbers of neurons, a major hindrance to the field of study. 3-dimentional “neurosphere” culture allows better 3D cell-cell contact, but control over cell differentiation is poor because nutrition and oxygen restrictions at the core of the sphere causes spontaneous differentiation, predominantly to glial cells, not neurons. Our group has developed macroporous scaffolds, which overcome the above-mentioned problems, allowing long-term culture of neural stem cells, which can be differentiated into a much higher yield of neurons. Herein we describe a method for culturing neural precursor cells on RGD peptide functionalized-heparin containing cryogel scaffolds, either in standard non-adherent well-plates (static culture) or in spinner flasks (dynamic culture). This method includes: • The synthesis and characterization of heparin based microcarriers. • A “static” 3D culture method for that does not require spinner flask equipment. • “Dynamic” culture in which cell loaded microcarriers are transferred to a spinner flask. © 2020 The Author

    Cryogel biomaterials for neuroscience applications

    Get PDF
    Biomaterials in the form of 3D polymeric scaffolds have been used to create structurally and functionally biomimetic constructs of nervous system tissue. Such constructs can be used to model defects and disease or can be used to supplement neuronal tissue regeneration and repair. One such group of biomaterial scaffolds are hydrogels, which have been widely investigated for cell/tissue culture and as cell or molecule delivery systems in the field of neurosciences. However, a subset of hydrogels called cryogels, have shown to possess several distinct structural advantages over conventional hydrogel networks. Their macroporous structure, created via the time and resource efficient fabrication process (cryogelation) not only allows mass fluid transport throughout the structure, but also creates a high surface area to volume ratio for cell growth or drug loading. In addition, the macroporous structure of cryogels is ideal for applications in the central nervous system as they are very soft and spongey, yet also robust, which makes them a user-friendly and reproducible tool to address neuroscience challenges. In this review, we aim to provide the neuroscience community, who may not be familiar with the fundamental concepts of cryogels, an accessible summary of the basic information that pertain to their use in the brain and nervous tissue. We hope that this review shall initiate creative ways that cryogels could be further adapted and employed to tackle unsolved neuroscience challenges

    Injectable local drug delivery systems for glioblastoma: a systematic review and meta -analysis of progress to date †

    Get PDF
    Glioblastoma (GBM) is an aggressive malignant cancer associated with bleak prognosis and high mortality. The current standard of care for GBM is maximum surgical resection plus radiotherapy and temozolomide (TMZ) chemotherapy. The blood brain barrier (BBB) remains the main obstacle for chemotherapy and severely limits the choice of therapeutic agents. Local treatment allows drugs to circumvent the BBB and reduces systemic side effects. Despite much research effort, to date, no drug delivery system (DDS) designed to be directly injected into brain tumors has been clinically approved, and a systematic overview of the progress in this field, or lack thereof, is missing. In this review, a systematic search of pre-clinical literature was conducted which resulted in 36 original articles on injectable DDS for local treatment of GBM which met the inclusion criteria. A wide range of injectable DDS have been developed and tested pre-clinically which include nanoparticles, liposomes, microspheres, hydrogels and others. meta-Analyses of the included studies showed that, overall, local administration of injectable DDS was beneficial to increase the animal's survival time. Finally, this review summarized the therapeutic effect after local treatment and discussed the shortcomings of the experimental setting in in vivo studies

    Local delivery to malignant brain tumors: potential biomaterial-based therapeutic/adjuvant strategies

    Get PDF
    Glioblastoma (GBM) is the most aggressive malignant brain tumor and is associated with a very poor prognosis. The standard treatment for newly diagnosed patients involves total tumor surgical resection (if possible), plus irradiation and adjuvant chemotherapy. Despite treatment, the prognosis is still poor, and the tumor often recurs within two centimeters of the original tumor. A promising approach to improving the efficacy of GBM therapeutics is to utilize biomaterials to deliver them locally at the tumor site. Local delivery to GBM offers several advantages over systemic administration, such as bypassing the blood–brain barrier and increasing the bioavailability of the therapeutic at the tumor site without causing systemic toxicity. Local delivery may also combat tumor recurrence by maintaining sufficient drug concentrations at and surrounding the original tumor area. Herein, we critically appraised the literature on local delivery systems based within the following categories: polymer-based implantable devices, polymeric injectable systems, and hydrogel drug delivery systems. We also discussed the negative effect of hypoxia on treatment strategies and how one might utilize local implantation of oxygen-generating biomaterials as an adjuvant to enhance current therapeutic strategies

    Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin

    Get PDF
    Externally controlled site specific drug delivery could potentially provide a means of reducing drug related side effects whilst maintaining, or perhaps increasing therapeutic efficiency. The aim of this work was to develop a nanoscale drug carrier, which could be loaded with an anti-cancer drug and be directed by an external magnetic field. Using a single, commercially available monomer and a simple one-pot reaction process, a polymer was synthesized and crosslinked within the pores of an anodized aluminum oxide template. These polymer nanotubes (PNT) could be functionalized with iron oxide nanoparticles for magnetic manipulation, without affecting the large internal pore, or inherent low toxicity. Using an external magnetic field the nanotubes could be regionally concentrated, leaving areas devoid of nanotubes. Lastly, doxorubicin could be loaded to the PNTs, causing increased toxicity towards neuroblastoma cells, rendering a platform technology now ready for adaptation with different nanoparticles, degradable pre-polymers and various therapeutics

    Growth factor therapy for Parkinson's disease: alternative delivery systems

    Get PDF
    Despite decades of research and billions in global investment, there remains no preventative or curative treatment for any neurodegenerative condition, including Parkinson’s disease (PD). Arguably, the most promising approach for neuroprotection and neurorestoration in PD is using growth factors which can promote the growth and survival of degenerating neurons. However, although neurotrophin therapy may seem like the ideal approach for neurodegenerative disease, the use of growth factors as drugs presents major challenges because of their protein structure which creates serious hurdles related to accessing the brain and specific targeting of affected brain regions. To address these challenges, several different delivery systems have been developed, and two major approaches—direct infusion of the growth factor protein into the target brain region and in vivo gene therapy—have progressed to clinical trials in patients with PD. In addition to these clinically evaluated approaches, a range of other delivery methods are in various degrees of development, each with their own unique potential. This review will give a short overview of some of these alternative delivery systems, with a focus on ex vivo gene therapy and biomaterial-aided protein and gene delivery, and will provide some perspectives on their potential for clinical development and translation

    Poly(ethylene glycol)(PEG)-Cryogels: a novel platform towards enzymatic electrochemiluminescence (ECL)-based sensor applications

    Get PDF
    Enzymes-based electrochemical biosensors require the immobilisation of the enzymes on the electrode surfaces as well as their storage in aqueous environments to maintain the enzymatic activity. Herein, we described an enzyme-based electrochemiluminescence biosensor fabricated by incorporating oxidase enzymes (horseradish peroxidase, HRP; glucose, GOx, lactate, LOx, and cholesterol oxidases, ChOx) within poly(ethylene glycol)diacrylate (PEGDA) cryogels, which retain their activity when stored in dry conditions. The redox reactions between the oxidase enzymes and their corresponding substrates produce hydrogen peroxide that can be detected in the presence of a layer of polyluminol deposited on the electrode surface. These oxidases PEG-based cryogels were characterized using cyclic voltammetry and electrochemiluminescence (ECL) to assess the redox reactions between the enzymes and the corresponding substrates. The proposed biosensors were characterised by good stability and repeatability with a calculated limit of detections (LODs) in the micromolar concentration range. The performances of PEG cryogels over the time evidenced the stability of the as-prepared materials up to 30 days in dry conditions, confirming good retention of the encapsulated enzymes. Furthermore, the biosensors were tested in the presence of interferent species showing good selectivity. Finally, these oxidases-PEG cryogels were tested in real samples (commercial contact lenses, artificial sweat and commercial milk) confirming the suitability of such material for the detection of hydrogen peroxide with calculated LoDs as 10.37 ± 0.4 µM for HRP/contact lenses liquid; 3.87 ± 0.3 µM for GOx/artificial sweat; 1.09 ± 0.6 µM for LOx/artificial sweat; and 6.59 ± 0.5 for ChOx/milk
    • …
    corecore