284 research outputs found

    Fast and Space-Efficient Construction of AVL Grammars from the LZ77 Parsing

    Get PDF
    Grammar compression is, next to Lempel-Ziv (LZ77) and run-length Burrows-Wheeler transform (RLBWT), one of the most flexible approaches to representing and processing highly compressible strings. The main idea is to represent a text as a context-free grammar whose language is precisely the input string. This is called a straight-line grammar (SLG). An AVL grammar, proposed by Rytter [Theor. Comput. Sci., 2003] is a type of SLG that additionally satisfies the AVL property: the heights of parse trees for children of every nonterminal differ by at most one. In contrast to other SLG constructions, AVL grammars can be constructed from the LZ77 parsing in compressed time: ?(z log n) where z is the size of the LZ77 parsing and n is the length of the input text. Despite these advantages, AVL grammars are thought to be too large to be practical. We present a new technique for rapidly constructing a small AVL grammar from an LZ77 or LZ77-like parse. Our algorithm produces grammars that are always at least five times smaller than those produced by the original algorithm, and usually not more than double the size of grammars produced by the practical Re-Pair compressor [Larsson and Moffat, Proc. IEEE, 2000]. Our algorithm also achieves low peak RAM usage. By combining this algorithm with recent advances in approximating the LZ77 parsing, we show that our method has the potential to construct a run-length BWT in about one third of the time and peak RAM required by other approaches. Overall, we show that AVL grammars are surprisingly practical, opening the door to much faster construction of key compressed data structures

    Pangenomic Genotyping with the Marker Array

    Get PDF
    We present a new method and software tool called rowbowt that applies a pangenome index to the problem of inferring genotypes from short-read sequencing data. The method uses a novel indexing structure called the marker array. Using the marker array, we can genotype variants with respect from large panels like the 1000 Genomes Project while avoiding the reference bias that results when aligning to a single linear reference. rowbowt can infer accurate genotypes in less time and memory compared to existing graph-based methods

    ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets

    Get PDF
    <p>Abstract</p> <p>1 Background</p> <p>RNA sequencing is a flexible and powerful new approach for measuring gene, exon, or isoform expression. To maximize the utility of RNA sequencing data, new statistical methods are needed for clustering, differential expression, and other analyses. A major barrier to the development of new statistical methods is the lack of RNA sequencing datasets that can be easily obtained and analyzed in common statistical software packages such as R. To speed up the development process, we have created a resource of analysis-ready RNA-sequencing datasets.</p> <p>2 Description</p> <p>ReCount is an online resource of RNA-seq gene count tables and auxilliary data. Tables were built from raw RNA sequencing data from 18 different published studies comprising 475 samples and over 8 billion reads. Using the Myrna package, reads were aligned, overlapped with gene models and tabulated into gene-by-sample count tables that are ready for statistical analysis. Count tables and phenotype data were combined into Bioconductor ExpressionSet objects for ease of analysis. ReCount also contains the Myrna manifest files and R source code used to process the samples, allowing statistical and computational scientists to consider alternative parameter values.</p> <p>3 Conclusions</p> <p>By combining datasets from many studies and providing data that has already been processed from. fastq format into ready-to-use. RData and. txt files, ReCount facilitates analysis and methods development for RNA-seq count data. We anticipate that ReCount will also be useful for investigators who wish to consider cross-study comparisons and alternative normalization strategies for RNA-seq.</p

    Cloud-scale RNA-sequencing differential expression analysis with Myrna

    Get PDF
    As sequencing throughput approaches dozens of gigabases per day, there is a growing need for efficient software for analysis of transcriptome sequencing (RNA-Seq) data. Myrna is a cloud-computing pipeline for calculating differential gene expression in large RNA-Seq datasets. We apply Myrna to the analysis of publicly available data sets and assess the goodness of fit of standard statistical models. Myrna is available from http://bowtie-bio.sf.net/myrna

    Ultrafast and memory-efficient alignment of short DNA sequences to the human genome

    Get PDF
    Bowtie: a new ultrafast memory-efficient tool for the alignment of short DNA sequence reads to large genomes

    Searching for SNPs with cloud computing

    Get PDF
    Novel software utilizing cloud computing technology to cost-effectively align and map SNPs from a human genome in three
    • …
    corecore