427 research outputs found

    Temperature influence on the carbon isotopic composition of Orbulina universa and Globigerina bulloides (planktonic foraminifera)

    Get PDF
    Laboratory experiments with the planktonic foraminifera Orbulina universa (symbiotic) and Globigerina bulloides (nonsymbiotic) were used to examine the effects of temperature, irradiance (symbiont photosynthesis), [CO32-], [HPO42-], and ontogeny on shell d13C values. In ambient seawater ([CO32-] = 171 mmol kg-1), the d13C of O. universa shells grown under low light (LL) levels is insensitive to temperature and records the d13C value of seawater TCO2. In contrast, the d13C of high light (HL) shells increases ~0.4‰ across 15-25°C (+0.050‰/°C). This suggests that the d13C enrichment due to symbiont photosynthetic activity is temperature-dependent. A comparison of HL O. universa grown in elevated [CO32-] seawater with ambient specimens shows that temperature does not affect the slope of the d13C/[CO32-] relationship previously described [Spero et al., 1997]. The d13C of G. bulloides shells decreases across the 15-24°C temperature range and d13C:temperature slopes decrease with increasing shell size (-0.13, -0.10, and -0.09‰/°C in 11- 12-, and 13-chambered shells, respectively). The pattern of lower d13C values at higher temperatures likely results from the incorporation of more respired CO2 into the shell at higher metabolic rates. The d13C of HL O. universa increases with increased seawater [HPO42-]

    Methods for preparing dry, partially articulated skeletons of osteichthyans, with notes on making ridewood dissections of the cranial skeleton

    Get PDF
    Journal ArticleWe describe methods for preparing dry skeletons of virtually any osteichthyan species with a well-ossified skeleton, including very large specimens (e.g., > 1 m Megalops atlanticus). Our approach differs from those conventionally used to prepare skeletons of tetrapods in that (1) fairly complete dissection of the specimen is required at the outset of processing; and (2) we use an alcohol dehydration step to rapidly dry the specimen. Similar techniques can be used to prepare well-calcified chondrichthyan skeletons. We also outline the steps for making Ridewood dissections of the skull. Dry, partially articulated skeletons prepared by these methods can be stored indefinitely in acid-free containers in an environmentally controlled space (21 ± 6 3 ±; Rh = 40% ± 5%) in pest-proof specimen cases. Although a truism of anatomical research is that you cannot learn everything from studying one specimen or one type of preparation, partially articulated dry skeletons are useful for research ranging from phylogenetic investigations to age and growth analyses to functional morphology, making them of great and lasting value to any collection

    Putting our heads together: interpersonal neural synchronization as a biological mechanism for shared intentionality

    Get PDF
    Shared intentionality, or collaborative interactions in which individuals have a shared goal and must coordinate their efforts, is a core component of human interaction. However, the biological bases of shared intentionality and, specifically, the processes by which the brain adjusts to the sharing of common goals, remain largely unknown. Using functional near infrared spectroscopy (fNIRS), coordination of cerebral hemodynamic activation was found in subject pairs when completing a puzzle together in contrast to a condition in which subjects completed identical but individual puzzles (same intention without shared intentionality). Interpersonal neural coordination was also greater when completing a puzzle together compared to two control conditions including the observation of another pair completing the same puzzle task or watching a movie with a partner (shared experience). Further, permutation testing revealed that the time course of neural activation of one subject predicted that of their partner, but not that of others completing the identical puzzle in different partner sets. Results indicate unique brain-to-brain coupling specific to shared intentionality beyond what has been previously found by investigating the fundamentals of social exchange

    Performance of a 229 Thorium solid-state nuclear clock

    Full text link
    The 7.8 eV nuclear isomer transition in 229 Thorium has been suggested as an etalon transition in a new type of optical frequency standard. Here we discuss the construction of a "solid-state nuclear clock" from Thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of Calcium fluoride. At liquid Nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the Thorium nucleus to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose a clock stabilization based on counting of flourescence photons and present optimized operation parameters. Taking advantage of the high number of quantum oscillators under continuous interrogation, a fractional instability level of 10^{-19} might be reached within the solid-state approach.Comment: 28 pages, 9 figure

    MicroRNA-26a Is Strongly Downregulated in Melanoma and Induces Cell Death through Repression of Silencer of Death Domains (SODD)

    Get PDF
    Melanoma is an aggressive cancer that metastasizes rapidly and is refractory to conventional chemotherapies. Identifying microRNAs (miRNAs) that are responsible for this pathogenesis is therefore a promising means of developing new therapies. We identified miR-26a through microarray and quantitative reverse-transcription–PCR (qRT-PCR) experiments as an miRNA that is strongly downregulated in melanoma cell lines as compared with primary melanocytes. Treatment of cell lines with miR-26a mimic caused significant and rapid cell death compared with a negative control in most melanoma cell lines tested. In surveying targets of miR-26a, we found that protein levels of SMAD1 (mothers against decapentaplegic homolog 1) and BAG-4/SODD were strongly decreased in sensitive cells treated with miR-26a mimic as compared with the control. The luciferase reporter assays further demonstrated that miR-26a can repress gene expression through the binding site in the 3′ untranslated region (3′UTR) of SODD (silencer of death domains). Knockdown of these proteins with small interfering RNA (siRNA) showed that SODD has an important role in protecting melanoma cells from apoptosis in most cell lines sensitive to miR-26a, whereas SMAD1 may have a minor role. Furthermore, transfecting cells with a miR-26a inhibitor increased SODD expression. Our findings indicate that miR-26a replacement is a potential therapeutic strategy for metastatic melanoma, and that SODD, in particular, is a potentially useful therapeutic target

    Pregnancy-induced changes in cell-fate in the mammary gland

    Get PDF
    The protective effect of an early full-term pregnancy is a well established phenomenon; in contrast, the molecular and cell-specific mechanisms that govern parity-specific changes in the mammary gland have not been well described. Recent studies signify a dramatic advance in our understanding of this phenomenon, and indicate a 'cell fate' model for parity-related changes that lead to protection against breast cancer

    Multilocus sequence typing for characterization of Staphylococcus pseudintermedius

    Get PDF
    Staphylococcus pseudintermedius is an opportunistic pathogen in dogs. Four housekeeping genes with allelic polymorphisms were identified and used to develop an expanded multilocus sequence typing (MLST) scheme. The new seven-locus technique shows S. pseudintermedius to have greater genetic diversity than previous methods and discriminates more isolates based upon host origin
    • …
    corecore