2 research outputs found

    Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

    Get PDF
    Controlling the work function of transition metal oxides is of key importance with regard to future energy production and storage. As the majority of applications involve the use of heterostructures, the most suitable characterization technique is Kelvin probe force microscopy (KPFM), which provides excellent energetic and lateral resolution. In this paper, we demonstrate precise characterization of the work function using the example of artificially formed crystalline titanium monoxide (TiO) nanowires on strontium titanate (SrTiO3) surfaces, providing a sharp atomic interface. The measured value of 3.31(21) eV is the first experimental work function evidence for a cubic TiO phase, where significant variations among the different crystallographic facets were also observed. Despite the remarkable height of the TiO nanowires, KPFM was implemented to achieve a high lateral resolution of 15 nm, which is close to the topographical limit. In this study, we also show the unique possibility of obtaining work function and conductivity maps on the same area by combining noncontact and contact modes of atomic force microscopy (AFM). As most of the real applications require ambient operating conditions, we have additionally checked the impact of air venting on the work function of the TiO/SrTiO3(100) heterostructure, proving that surface reoxidation occurs and results in a work function increase of 0.9 eV and 0.6 eV for SrTiO3 and TiO, respectively. Additionally, the influence of adsorbed surface species was estimated to contribute 0.4 eV and 0.2 eV to the work function of both structures. The presented method employing KPFM and local conductivity AFM for the characterization of the work function of transition metal oxides may help in understanding the impact of reduction and oxidation on electronic properties, which is of high importance in the development of effective sensing and catalytic devices

    Into the Origin of Electrical Conductivity for the Metal-Semiconductor Junction at the Atomic Level

    Get PDF
    The metal-semiconductor (M-S) junction based devices are commonly used in all sorts of electronic devices. Their electrical properties are defined by the metallic phase properties with a respect to the semiconductor used. Here we make an in-depth survey on the origin of the M-S junction at the atomic scale by studying the properties of the AuIn2 nanoelectrodes formed on the InP(001) surface by the in situ electrical measurements in combination with a detailed investigation of atomically resolved structure supported by the first-principle calculations of its local electrical properties. We have found that a different crystallographic orientation of the same metallic phase with a respect to the semiconductor structure influences strongly the M-S junction rectifying properties by subtle change of the metal Fermi level and influencing the band edge moving at the interface. This ultimately changes conductivity regime between Ohmic and Schottky type. The effect of crystallographic orientation has to be taken into account in the engineering of the M-S junction-based electronic devices
    corecore