164 research outputs found
Multiple Dendritic Cell Populations Activate CD4+ T Cells after Viral Stimulation
Dendritic cells (DC) are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8ฮฑ DC play a prominent, and sometimes exclusive, role in driving amplification of CD8+ T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4+ T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4+ and CD8+ T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8ฮฑ DC populations in the amplification of CD8+ and CD4+ T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8+ T cells are dominated by presentation of antigen by CD8ฮฑ DC but can involve non-CD8ฮฑ DC. In contrast, CD4+ T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4+ T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity
Sustainability marketing myopia: the lack of sustainability communication persuasiveness
Sustainability communication in accommodation businesses tends to be factual and descriptive, as companies are concerned with product-based messages that focus on what they do; they appear not to understand the potential benefits of constructing messages that would influence consumers to behave more sustainably, which is effectively sustainability marketing myopia. An analysis of 1,835 sustainability messages from award-winning businesses shows that messages communicate facts not emotions, and benefits for society as a whole rather than for the individual customer. The messages are explicit, but passive and not experiential hence they positively affect the cognitive but not the affective image of the business. The lack of message normalization and customer focus reinforces the image of sustainability being a niche concern. We reflect on the reasons for these shortcomings and highlight opportunities to improve persuasive communication, which we have now applied commercially in more than 400 website analyses and 60 training courses
Simian-Human Immunodeficiency Infection โ Is the Course Set in the Acute Phase?
Identifying early predictors of infection outcome is important for the clinical management of HIV infection, and both viral load and CD4+ T cell level have been found to be useful predictors of subsequent disease progression. Very high viral load or extensively depleted CD4+ T cells in the acute phase often result in failure of immune control, and a fast progression to AIDS. It is usually assumed that extensive loss of CD4+ T cells in the acute phase of HIV infection prevents the establishment of robust T cell help required for virus control in the chronic phase. We tested this hypothesis using viral load and CD4+ T cell number of SHIV-infected rhesus macaques. In acute infection, the lowest level of CD4+ T cells was a good predictor of later survival; animals having less than 3.3% of baseline CD4+ T cells progressed to severe disease, while animals with more than 3.3% of baseline CD4+ T cells experienced CD4+ T cell recovery. However, it is unclear if the disease progression was caused by early depletion, or was simply a result of a higher susceptibility of an animal to infection. We derived a simple relationship between the expected number of CD4+ T cells in the acute and chronic phases for a constant level of host susceptibility or resistance. We found that in most cases, the depletion of CD4+ T cells in chronic infection was consistent with the prediction from the acute CD4+ T cell loss. However, the animals with less than 3.3% of baseline CD4 T cells in the acute phase were approximately 20% more depleted late in the infection than expected based on constant level of virus control. This suggests that severe acute CD4 depletion indeed impairs the immune response
Immunization with Radiation-Attenuated Plasmodium berghei Sporozoites Induces Liver cCD8ฮฑ+DC that Activate CD8+T Cells against Liver-Stage Malaria
Immunization with radiation (ฮณ)-attenuated Plasmodia sporozoites (ฮณ-spz) confers sterile and long-lasting immunity against malaria liver-stage infection. In the P. berghei ฮณ-spz model, protection is linked to liver CD8+ T cells that express an effector/memory (TEM) phenotype, (CD44hiCD45RBloCD62Llo ), and produce IFN-ฮณ. However, neither the antigen presenting cells (APC) that activate these CD8+ TEM cells nor the site of their induction have been fully investigated. Because conventional (c)CD8ฮฑ+ DC (a subset of CD11c+ DC) are considered the major inducers of CD8+ T cells, in this study we focused primarily on cCD8ฮฑ+ DC from livers of mice immunized with Pb ฮณ-spz and asked whether the cCD8ฮฑ+ DC might be involved in the activation of CD8+ TEM cells. We demonstrate that multiple exposures of mice to Pb ฮณ-spz lead to a progressive and nearly concurrent accumulation in the liver but not the spleen of both the CD11c+NK1.1โ DC and CD8+ TEM cells. Upon adoptive transfer, liver CD11c+NK1.1โ DC from Pb ฮณ-spz-immunized mice induced protective immunity against sporozoite challenge. Moreover, in an in vitro system, liver cCD8ฮฑ+ DC induced naรฏve CD8+ T cells to express the CD8+ TEM phenotype and to secrete IFN-ฮณ. The in vitro induction of functional CD8+ TEM cells by cCD8ฮฑ+ DC was inhibited by anti-MHC class I and anti-IL-12 mAbs. These data suggest that liver cCD8ฮฑ+ DC present liver-stage antigens to activate CD8+ TEM cells, the pre-eminent effectors against pre-erythrocytic malaria. These results provide important implications towards a design of anti-malaria vaccines
The beta2 integrin CD11c distinguishes a subset of cytotoxic pulmonary T cells with potent antiviral effects in vitro and in vivo
BACKGROUND: The integrin CD11c is known as a marker for dendritic cells and has recently been described on T cells following lymphotropic choriomeningitis virus infection, a systemic infection affecting a multitude of organs. Here, we characterise CD11c bearing T cells in a murine model of localised pulmonary infection with respiratory syncytial virus (RSV). METHODS: Mice were infected intranasally with RSV and expression of ฮฒ2 integrins and T lymphocyte activation markers were monitored by flow cytometry. On day 8 post RSV infection CD11c(+ )CD8(+ )and CD11c(- )CD8(+ )T cells were assessed for cytokine production, cytotoxic activity and migration. Expression of CD11c mRNA in CD8(+ )T cells was assessed by quantitative PCR. RESULTS: Following RSV infection CD11c(+ )CD8(+ )T cells were detectable in the lung from day 4 onwards and accounted for 45.9 ยฑ 4.8% of CD8(+ )T cells on day 8 post infection, while only few such cells were present in mediastinal lymph nodes, spleen and blood. While CD11c was virtually absent from CD8(+ )T cells in the absence of RSV infection, its mRNA was expressed in CD8(+ )T cells of both naรฏve and RSV infected mice. CD11c(+), but not CD11c(-), CD8(+ )T cells showed signs of recent activation, including up-regulation of CD11a and expression of CD11b and CD69 and were recruited preferentially to the lung. In addition, CD11c(+ )CD8(+ )T cells were the major subset responsible for IFNฮณ production, induction of target cell apoptosis in vitro and reduction of viral titres in vivo. CONCLUSION: CD11c is a useful marker for detection and isolation of pulmonary antiviral cytotoxic T cells following RSV infection. It identifies a subset of activated, virus-specific, cytotoxic T cells that exhibit potent antiviral effects in vivo
Respiratory Dendritic Cell Subsets Differ in Their Capacity to Support the Induction of Virus-Specific Cytotoxic CD8+ T Cell Responses
Dendritic cells located at the body surfaces, e.g. skin, respiratory and gastrointestinal tract, play an essential role in the induction of adaptive immune responses to pathogens and inert antigens present at these surfaces. In the respiratory tract, multiple subsets of dendritic cells (RDC) have been identified in both the normal and inflamed lungs. While the importance of RDC in antigen transport from the inflamed or infected respiratory tract to the lymph nodes draining this site is well recognized, the contribution of individual RDC subsets to this process and the precise role of migrant RDC within the lymph nodes in antigen presentation to T cells is not clear. In this report, we demonstrate that two distinct subsets of migrant RDC - exhibiting the CD103+ and CD11bhi phenotype, respectively - are the primary DC presenting antigen to naรฏve CD4+ and CD8+ T lymphocytes in the draining nodes in response to respiratory influenza virus infection. Furthermore, the migrant CD103+ RDC subset preferentially drives efficient proliferation and differentiation of naive CD8+ T cells responding to infection into effector cells, and only the CD103+ RDC subset can present to naรฏve CD8+ T cells non-infectious viral vaccine introduced into the respiratory tract. These results identify CD103+ and CD11bhi RDC as critical regulators of the adaptive immune response to respiratory tract infection and potential targets in the design of mucosal vaccines
Preferential Amplification of CD8 Effector-T Cells after Transcutaneous Application of an Inactivated Influenza Vaccine: A Randomized Phase I Trial
Background: Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route) the induction of virus-specific CD8 T cell responses. Methods and Findings: We chose the inactivated influenza vaccine โ a conventional licensed tetanus/influenza (TETAGRIPยฎ) vaccine โ to compare the safety and immunogenicity of transcutaneous (TC) versus IM immunization in two randomized controlled, multi-center Phase I trials including 24 healthy-volunteers and 12 HIV-infected patients. Vaccination was performed by application of inactivated influenza vaccine according to a standard protocol allowing the opening of the hair duct for the TC route or needle-injection for the IM route. We demonstrated that the safety of the two routes was similar. We showed the superiority of TC application, but not the IM route, to induce a significant increase in influenza-specific CD8 cytokine-producing cells in healthy-volunteers and in HIV-infected patients. However, these routes did not differ significantly for the induction of influenza-specific CD4 responses, and neutralizing antibodies were induced only by the IM route. The CD8 cell response is thus the major immune response observed after TC vaccination. Conclusions: This Phase Ia clinical trial (Manon05) testing an anti-influenza vaccine demonstrated that vaccines designed for antibody induction by the IM route, generate vaccine-specific CD8 T cells when administered transcutaneously. These results underline the necessity of adapting vaccination strategies to control complex infectious diseases when CD8 cellular responses are crucial. Our work opens up a key area for the development of preventive and therapeutic vaccines for diseases in which CD8 cells play a crucial role
Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma.
Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies
Large-Scale Sequence Analysis of Hemagglutinin of Influenza A Virus Identifies Conserved Regions Suitable for Targeting an Anti-Viral Response
BACKGROUND: Influenza A viral surface protein, hemagglutinin, is the major target of neutralizing antibody response and hence a main constituent of all vaccine formulations. But due to its marked evolutionary variability, vaccines have to be reformulated so as to include the hemagglutinin protein from the emerging new viral strain. With the constant fear of a pandemic, there is critical need for the development of anti-viral strategies that can provide wider protection against any Influenza A pathogen. An anti-viral approach that is directed against the conserved regions of the hemaggutinin protein has a potential to protect against any current and new Influenza A virus and provide a solution to this ever-present threat to public health. METHODOLOGY/PRINCIPAL FINDINGS: Influenza A human hemagglutinin protein sequences available in the NCBI database, corresponding to H1, H2, H3 and H5 subtypes, were used to identify highly invariable regions of the protein. Nine such regions were identified and analyzed for structural properties like surface exposure, hydrophilicity and residue type to evaluate their suitability for targeting an anti-peptide antibody/anti-viral response. CONCLUSION/SIGNIFICANCE: This study has identified nine conserved regions in the hemagglutinin protein, five of which have the structural characteristics suitable for an anti-viral/anti-peptide response. This is a critical step in the design of efficient anti-peptide antibodies as novel anti-viral agents against any Influenza A pathogen. In addition, these anti-peptide antibodies will provide broadly cross-reactive immunological reagents and aid the rapid development of vaccines against new and emerging Influenza A strains
- โฆ