90 research outputs found

    Characteristics of Solar Flare Doppler Shift Oscillations Observed with the Bragg Crystal Spectrometer on Yohkoh

    Full text link
    This paper reports the results of a survey of Doppler shift oscillations measured during solar flares in emission lines of S XV and Ca XIX with the Bragg Crystal Spectrometer (BCS) on Yohkoh. Data from 20 flares that show oscillatory behavior in the measured Doppler shifts have been fitted to determine the properties of the oscillations. Results from both BCS channels show average oscillation periods of 5.5 +/- 2.7 minutes, decay times of 5.0 +/-2.5 minutes, amplitudes of 17.1 +/- 17.0 km/s, and inferred displacements of 1070 +/- 1710 km, where the listed errors are the standard deviations of the sample means. For some of the flares, intensity fluctuations are also observed. These lag the Doppler shift oscillations by 1/4 period, strongly suggesting that the oscillations are standing slow mode waves. The relationship between the oscillation period and the decay time is consistent with conductive damping of the oscillations.Comment: Accepted for publication in Ap

    Absorption spectra of Fe L-lines in Seyfert 1 galaxies

    Full text link
    Absorption L-lines of iron ions are observed, in absorption, in spectra of Seyfert 1 galaxies by the new generation of X-ray satellites: Chandra (NASA) and XMM-Newton (ESA). Lines associated to Fe23+ to Fe17+ are well resolved. Whereas, those corresponding to Fe16+ to Fe6+ are unresolved. Forbidden transitions of the Fe16+ to Fe6+ ions were previously observed, for the same objects, in the visible and infra-red regions, showing that the plasma had a low density. To interpret X-ray, visible and infra-red data, astrophysical models assume an extended absorbing medium of very low density surrounding an intense X-ray source. We have calculated atomic data (wavelengths, radiative and autoionization rates) for n=2 to n'=3-4 transitions and used them to construct refined synthetic spectra of the unresolved part of the L-line spectra.Comment: 17 pages, 5 figures, Journal of Quantitative Spectroscopy and Radiative Transfer, in pres

    Highly Ionized Potassium Lines in Solar X-ray Spectra and the Abundance of Potassium

    Full text link
    The abundance of potassium is derived from X-ray lines observed during flares by the RESIK instrument on the solar mission CORONAS-F between 3.53 A and 3.57 A. The lines include those emitted by He-like K and Li-like K dielectronic satellites, which have been synthesized using the CHIANTI atomic code and newly calculated atomic data. There is good agreement of observed and synthesized spectra, and the theoretical behavior of the spectra with varying temperature estimated from the ratio of the two GOES channels is correctly predicted. The observed fluxes of the He-like K resonance line per unit emission measure gives log A(K) = 5.86 (on a scale log A(H) = 12), with a total range of a factor 2.9. This is higher than photospheric abundance estimates by a factor 5.5, a slightly greater enhancement than for other elements with first ionization potential (FIP) less than about 10 eV. There is, then, the possibility that enrichment of low-FIP elements in coronal plasmas depends weakly on the value of the FIP which for K is extremely low (4.34 eV). Our work also suggests that fractionation of elements to form the FIP effect occurs in the low chromosphere rather than higher up, as in some models.Comment: 14 pages, 3 figure

    X-ray Line Diagnostics of Hot Accretion Flows around Black Holes

    Get PDF
    We compute X-ray emission lines from thermal plasma in hot accretion flows. We show that line profiles are strong probes of the gas dynamics, and we present line-ratio diagnostics which are sensitive to the distribution of mass with temperature in the flow. We show how these can be used to constrain the run of density with radius, and the size of the hot region. We also present diagnostics which are primarily sensitive to the importance of recombination versus collisional ionization, and which could help discriminate ADAFs from photoionization-dominated accretion disk coronae. We apply our results to the Galactic center source Sagittarius A* and to the nucleus of M87. We find that the brightest predicted lines are within the detection capability of current XX-ray instruments.Comment: 16 pages, 1 table, 9 figures, accepted to Ap

    RESIK observations of He-like Ar X-ray line emission in solar flares

    Full text link
    The Ar XVII X-ray line group principally due to transitions 1s2 - 1s2l (l=s, p) near 4 Anstroms was observed in numerous flares by the RESIK bent crystal spectrometer aboard CORONAS-F between 2001 and 2003. The three line features include the Ar XVII w (resonance line), a blend of x and y (intercombination lines), and z (forbidden line), all of which are blended with Ar XVI dielectronic satellites. The ratio G, equal to [I(x+y) + I(z)]/I(w), varies with electron temperature Te mostly because of unresolved dielectronic satellites. With temperatures estimated from GOES X-ray emission, the observed G ratios agree fairly well with those calculated from CHIANTI and other data. With a two-component emission measure, better agreement is achieved. Some S XV and S XVI lines blend with the Ar lines, the effect of which occurs at temperatures greater than 8MK, allowing the S/Ar abundance ratio to be determined. This is found to agree with coronal values. A nonthermal contribution is indicated for some spectra in the repeating-pulse flare of 2003 February 6.Comment: Latex file and 3 ps files. Astrophysical Journal Letters (accepted, June 2008

    Highly ionized Fe X-ray lines at energies 7.7-8.6 keV

    Full text link
    Fe XXV lines at 1.85 A (6.70 keV) and nearby Fe XXIV satellites have been widely used for determining the temperature of the hottest parts of solar flare and tokamak plasmas, though the spectral region is crowded and the lines are blended during flare impulsive stages. The aim of this work is to show that similarly excited Fe lines in the 7.7--8.6 keV (1.44--1.61 A) region have the same diagnostic capability with the advantage of not being so crowded. Spectra in the 7.7--8.6 keV range are synthesized using the CHIANTI spectral package for conditions (temperature, turbulent velocities) appropriate to solar flares. The calculated spectra show that the Fe lines in the 7.7--8.6 keV are well separated even when turbulent velocities are present, and Fe XXIV/Fe XXV line ratios should therefore provide valuable tools for diagnosing flares and tokamak plasmas. It is concluded that Fe lines in the 7.7--8.6 keV range are ideal for the measurement of flare temperature and for detecting the presence of low-energy nonthermal electrons present at flare impulsive stages. An indication of what type of instruments to observe this region is given.Comment: 6 pages, 7 figures. Accepted for publication in Astronomy and Astrophysic

    The Solar Flare Chlorine Abundance from RESIK X-ray Spectra

    Full text link
    The abundance of chlorine is determined from X-ray spectra obtained with the RESIK instrument on {\em CORONAS-F} during solar flares between 2002 and 2003. Using weak lines of He-like Cl, \ion{Cl}{16}, between 4.44 and 4.50 \AA, and with temperatures and emission measures from {\em GOES} on an isothermal assumption, we obtained A(Cl)=5.75±0.26A({\rm Cl}) = 5.75 \pm 0.26 on a scale A(H)=12A({\rm H}) = 12. The uncertainty reflects an approximately factor 2 scatter in measured line fluxes. Nevertheless our value represents what is probably the best solar determination yet obtained. It is higher by factors of 1.8 and 2.7 than Cl abundance estimates from an infrared sunspot spectrum and nearby \ion{H}{2} regions. The constancy of the RESIK abundance values over a large range of flares ({\em GOES} class from below C1 to X1) argues for any fractionation that may be present in the low solar atmosphere to be independent of the degree of solar activity.Comment: 13 pages, 3 colour figures. To be published, Astrophysical Journa

    X-Ray Photoabsorption in KLL Resonances of O VI And Abundance Analysis

    Get PDF
    It is shown that photoabsorption via autoionizing resonances may be appreciable and used for abundance analysis. Analogous to spectral lines, the `resonance oscillator strength' f_r may be defined and evaluated in terms of the differential oscillator strength df/d(epsilon) that relates bound and continuum absorption. X-ray photoabsorption in KLL (1s2s2p) resonances of O VI is investigated using highly resolved relativistic photoionization cross sections with fine structure. It is found that f_r is comparable to that for UV dipole transition in O VI (2s - 2p) and the X-ray (1s^2 ^1S_0 - 1s2p ^1P^o_1) transition in O VII. The dominant O VI(KLL) components lie at 22.05 and 21.87 Angstroms. These predicted absorption features should be detectable by the Chandra X-Ray Observatory (CXO) and the X-Ray Multi-Mirror Mission (XMM). The combined UV/X-ray spectra of O VI/O VII should yield valuable information on the ionization structure and abundances in sources such as the `warm absorber' region of active galactic nuclei and the hot intergalactic medium. Some general implications of resonant photoabsorption are addressed.Comment: Astrophys. J. Letters (in press), 9 pages, 3 figure

    The Solar Photospheric-to-Coronal Fe abundance from X-ray Fluorescence Lines

    Full text link
    The ratio of the Fe abundance in the photosphere to that in coronal flare plasmas is determined by X-ray lines within the complex at 6.7~keV (1.9~\AA) emitted during flares. The line complex includes the He-like Fe (\fexxv) resonance line ww (6.70~keV) and Fe Kα\alpha lines (6.39, 6.40~keV), the latter being primarily formed by the fluorescence of photospheric material by X-rays from the hot flare plasma. The ratio of the Fe Kα\alpha lines to the \fexxv\ ww depends on the ratio of the photospheric-to-flare Fe abundance, heliocentric angle θ\theta of the flare, and the temperature TeT_e of the flaring plasma. Using high-resolution spectra from X-ray spectrometers on the {\em P78-1} and {\em Solar Maximum Mission} spacecraft, the Fe abundance in flares is estimated to be 1.6±0.51.6\pm 0.5 and 2.0±0.32.0 \pm 0.3 times the photospheric Fe abundance, the {\em P78-1} value being preferred as it is more directly determined. This enhancement is consistent with results from X-ray spectra from the {\em RHESSI} spacecraft, but is significantly less than a factor 4 as in previous work.Comment: Accepted for publication by MNRA

    Impulsive phase transport

    Get PDF
    The transport of nonthermal electrons is explored. The thick-target electron beam model, in which electrons are presumed to be accelerated in the corona and typically thermalized primarily in the chromosphere and photosphere, is supported by observations throughout the electromagnetic spectrum. At the highest energies, the anisotropy of gamma-ray emission above 10 MeV clearly indicates that these photons are emitted by anisotropically-directed particles. The timing of this high-energy gamma-radiation with respect to lower-energy hard X-radiation implies that the energetic particles have short life-times. For collisional energy loss, this means that they are stopped in the chromosphere or below. Stereoscopic (two-spacecraft) observations at hard X-ray energies (up to 350 keV) imply that these lower-energy (but certainly nonthermal) electrons are also stopped deep in the chromosphere. Hard X-ray images show that, in spatially resolved flares whose radiation consists of impulsive bursts, the impulsive phase starts with X-radiation that comes mostly from the foot-points of coronal loops whose coronal component is outlined by microwaves
    • …
    corecore