5,290 research outputs found

    Aberrated dark-field imaging systems

    Get PDF
    We study generalized dark-field imaging systems. These are a subset of linear shift-invariant optical imaging systems, that exhibit arbitrary aberrations, and for which normally-incident plane-wave input yields zero output. We write down the theory for the forward problem of imaging coherent scalar optical fields using such arbitrarily-aberrated dark-field systems, and give numerical examples. The associated images may be viewed as a form of dark-field Gabor holography, utilizing arbitrary outgoing Green functions as generalized Huygens-type wavelets, and with the Young-type boundary wave forming the holographic reference

    Phase-and-amplitude recovery from a single phase contrast image using partially spatially coherent X-ray radiation

    Get PDF
    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single material. A priori knowledge of the object's complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase contrast data measured with a laboratory-based micro-focus X-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise

    Aberrations in shift-invariant linear optical imaging systems using partially coherent fields

    Full text link
    Here the role and influence of aberrations in optical imaging systems employing partially coherent complex scalar fields is studied. Imaging systems require aberrations to yield contrast in the output image. For linear shift-invariant optical systems, we develop an expression for the output cross-spectral density under the space-frequency formulation of statistically stationary partially coherentfields. We also develop expressions for the output cross{spectral density and associated spectral density for weak-phase, weak-phase-amplitude, and single-material objects in one transverse spatial dimension

    Evolution and excitation conditions of outflows in high-mass star-forming regions

    Full text link
    Theoretical models suggest that massive stars form via disk-mediated accretion, with bipolar outflows playing a fundamental role. A recent study toward massive molecular outflows has revealed a decrease of the SiO line intensity as the object evolves. The present study aims at characterizing the variation of the molecular outflow properties with time, and at studying the SiO excitation conditions in outflows associated with massive YSOs. We used the IRAM30m telescope to map 14 massive star-forming regions in the SiO(2-1), SiO(5-4) and HCO+(1-0) outflow lines, and in several dense gas and hot core tracers. Hi-GAL data was used to improve the spectral energy distributions and the L/M ratio, which is believed to be a good indicator of the evolutionary stage of the YSO. We detect SiO and HCO+ outflow emission in all the sources, and bipolar structures in six of them. The outflow parameters are similar to those found toward other massive YSOs. We find an increase of the HCO+ outflow energetics as the object evolve, and a decrease of the SiO abundance with time, from 10^(-8) to 10^(-9). The SiO(5-4) to (2-1) line ratio is found to be low at the ambient gas velocity, and increases as we move to high velocities, indicating that the excitation conditions of the SiO change with the velocity of the gas (with larger densities and/or temperatures for the high-velocity gas component). The properties of the SiO and HCO+ outflow emission suggest a scenario in which SiO is largely enhanced in the first evolutionary stages, probably due to strong shocks produced by the protostellar jet. As the object evolves, the power of the jet would decrease and so does the SiO abundance. During this process, however, the material surrounding the protostar would have been been swept up by the jet, and the outflow activity, traced by entrained molecular material (HCO+), would increase with time.Comment: 31 pages, 10 figures and 5 tables (plus 2 figures and 3 tables in the appendix). Accepted for publication in A&A. [Abstract modified to fit the arXiv requirements.

    The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672

    Get PDF
    We report the case of the geometrical and kinematical decoupling between the bulge and the disk of the Sa galaxy NGC 4698. The R-band isophotal map of this spiral shows that the bulge structure is elongated perpendicularly to the major axis of the disk. At the same time a central stellar velocity gradient is found along the major axis of the bulge. We also present the Sa NGC 4672 as good candidate of a spiral hosting a bulge and a disk orthogonally decoupled with respect to one other. This decoupling of the two fundamental components of a visible galaxy suggests that the disk could represent a second event in the history of early-type spirals.Comment: 4 pages, 3 figures (LaTeX, cupconf.sty). To appear in "The Formation of Bulges" C. M. Carollo, H. C. Ferguson, R. F. G. Wyse (eds.), Cambridge University Pres

    Clinical and magnetic resonance imaging characteristics of thoracolumbar intervertenral disk extrusions and protrusions in large breed dogs

    Get PDF
    It has recently been shown that the fat-derived hormone adiponectin has the ability to decrease hyperglycemia and to reverse insulin resistance. However, bacterially produced full-length adiponectin is functionally inactive. Here, we show that endogenous adiponectin secreted by adipocytes is post-translationally modified into eight different isoforms, as shown by two-dimensional gel electrophoresis. Carbohydrate detection revealed that six of the adiponectin isoforms are glycosylated. The glycosylation sites were mapped to several lysines (residues 68, 71, 80, and 104) located in the collagenous domain of adiponectin, each having the surrounding motif of GXKGE(D). These four lysines were found to be hydroxylated and subsequently glycosylated. The glycosides attached to each of these four hydroxylated lysines are possibly glucosylgalactosyl groups. Functional analysis revealed that full-length adiponectin produced by mammalian cells is much more potent than bacterially generated adiponectin in enhancing the ability of subphysiological concentrations of insulin to inhibit gluconeogenesis in primary rat hepatocytes, whereas this insulin-sensitizing ability was significantly attenuated when the four glycosylated lysines were substituted with arginines. These results indicate that full-length adiponectin produced by mammalian cells is functionally active as an insulin sensitizer and that hydroxylation and glycosylation of the four lysines in the collagenous domain might contribute to this activity.link_to_subscribed_fulltex
    corecore