2,573 research outputs found

    Applications of machine and deep learning to thyroid cytology and histopathology: a review.

    Get PDF
    This review synthesises past research into how machine and deep learning can improve the cyto- and histopathology processing pipelines for thyroid cancer diagnosis. The current gold-standard preoperative technique of fine-needle aspiration cytology has high interobserver variability, often returns indeterminate samples and cannot reliably identify some pathologies; histopathology analysis addresses these issues to an extent, but it requires surgical resection of the suspicious lesions so cannot influence preoperative decisions. Motivated by these issues, as well as by the chronic shortage of trained pathologists, much research has been conducted into how artificial intelligence could improve current pipelines and reduce the pressure on clinicians. Many past studies have indicated the significant potential of automated image analysis in classifying thyroid lesions, particularly for those of papillary thyroid carcinoma, but these have generally been retrospective, so questions remain about both the practical efficacy of these automated tools and the realities of integrating them into clinical workflows. Furthermore, the nature of thyroid lesion classification is significantly more nuanced in practice than many current studies have addressed, and this, along with the heterogeneous nature of processing pipelines in different laboratories, means that no solution has proven itself robust enough for clinical adoption. There are, therefore, multiple avenues for future research: examine the practical implementation of these algorithms as pathologist decision-support systems; improve interpretability, which is necessary for developing trust with clinicians and regulators; and investigate multiclassification on diverse multicentre datasets, aiming for methods that demonstrate high performance in a process- and equipment-agnostic manner

    An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed

    Get PDF
    Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie breed population

    Experimental philosophy leading to a small scale digital data base of the conterminous United States for designing experiments with remotely sensed data

    Get PDF
    Research using satellite remotely sensed data, even within any single scientific discipline, often lacked a unifying principle or strategy with which to plan or integrate studies conducted over an area so large that exhaustive examination is infeasible, e.g., the U.S.A. However, such a series of studies would seem to be at the heart of what makes satellite remote sensing unique, that is the ability to select for study from among remotely sensed data sets distributed widely over the U.S., over time, where the resources do not exist to examine all of them. Using this philosophical underpinning and the concept of a unifying principle, an operational procedure for developing a sampling strategy and formal testable hypotheses was constructed. The procedure is applicable across disciplines, when the investigator restates the research question in symbolic form, i.e., quantifies it. The procedure is set within the statistical framework of general linear models. The dependent variable is any arbitrary function of remotely sensed data and the independent variables are values or levels of factors which represent regional climatic conditions and/or properties of the Earth's surface. These factors are operationally defined as maps from the U.S. National Atlas (U.S.G.S., 1970). Eighty-five maps from the National Atlas, representing climatic and surface attributes, were automated by point counting at an effective resolution of one observation every 17.6 km (11 miles) yielding 22,505 observations per map. The maps were registered to one another in a two step procedure producing a coarse, then fine scale registration. After registration, the maps were iteratively checked for errors using manual and automated procedures. The error free maps were annotated with identification and legend information and then stored as card images, one map to a file. A sampling design will be accomplished through a regionalization analysis of the National Atlas data base (presently being conducted). From this analysis a map of homogeneous regions of the U.S.A. will be created and samples (LANDSAT scenes) assigned by region

    Italian Science Case for ALMA Band 2+3

    Get PDF
    The Premiale Project "Science and Technology in Italy for the upgraded ALMA Observatory - iALMA" has the goal of strengthening the scientific, technological and industrial Italian contribution to the Atacama Large Millimeter/submillimeter Array (ALMA), the largest ground based international infrastructure for the study of the Universe in the microwave. One of the main objectives of the Science Working Group (SWG) inside iALMA, the Work Package 1, is to develop the Italian contribution to the Science Case for the ALMA Band 2 or Band 2+3 receiver. ALMA Band 2 receiver spans from ~67 GHz (bounded by an opaque line complex of ozone lines) up to 90 GHz which overlaps with the lower frequency end of ALMA Band 3. Receiver technology has advanced since the original definition of the ALMA frequency bands. It is now feasible to produce a single receiver which could cover the whole frequency range from 67 GHz to 116 GHz, encompassing Band 2 and Band 3 in a single receiver cartridge, a so called Band 2+3 system. In addition, upgrades of the ALMA system are now foreseen that should double the bandwidth to 16 GHz. The science drivers discussed below therefore also discuss the advantages of these two enhancements over the originally foreseen Band 2 system.Comment: 43 pages, 21 figure

    Annihilation of Dipolar Dark Matter: χχ→γγ

    Get PDF
    In this work we study the annihilation of dark matter, considering it as a neutral particle with magnetic and/or electric moments not null. The calculation of the effective section of the process χχbar→γγ is made starting from a general form of coupling χ χbar γ in the framework of an extension of the Standard Model. We found, when taking into account an annihilation of DDM-antiDDM to monoenergetic photons, that for small masses, mχ ≤ 0 GeV, an electric dipole moment ~10–6 e cm is required to satisfy the current residual density, while for the range of greater sensitivity of HAWC, 10 TeV < Eg < 20 TeV, the electrical dipole moment must be of the order of 10–8 e cm

    Isocurvature modes and Baryon Acoustic Oscillations

    Get PDF
    The measurement of Baryonic Acoustic Oscillations from galaxy surveys is well known to be a robust and powerful tool to constrain dark energy. This method relies on the knowledge of the size of the acoustic horizon at radiation drag derived from Cosmic Microwave Background Anisotropy measurements. In this paper we quantify the effect of non-standard initial conditions in the form of an isocurvature component on the determination of dark energy parameters from future BAO surveys. In particular, if there is an isocurvature component (at a level still allowed by present data) but it is ignored in the CMB analysis, the sound horizon and cosmological parameters determination is biased, and, as a consequence, future surveys may incorrectly suggest deviations from a cosmological constant. In order to recover an unbiased determination of the sound horizon and dark energy parameters, a component of isocurvature perturbations must be included in the model when analyzing CMB data. Fortunately, doing so does not increase parameter errors significantly.Comment: 23 pages, 3 figure

    Measurement of the full distribution of the persistent current in normal-metal rings

    Full text link
    We have measured the persistent current in individual normal metal rings over a wide range of magnetic fields. From this data, we extract the first six cumulants of the single-ring persistent current distribution. Our results are consistent with the theoretical prediction that this distribution should be nearly Gaussian (i.e., that these cumulants should be nearly zero) for diffusive metallic rings. This measurement highlights the particular sensitivity of persistent current to the mesoscopic fluctuations within a single coherent volume.Comment: 14 pages, 4 figures and supplementary on-line information (31 pages

    Androgen Receptor Signaling Pathway in Prostate Cancer: From Genetics to Clinical Applications

    Get PDF
    Around 80-90% of prostate cancer (PCa) cases are dependent on androgens at initial diagnosis; hence, androgen ablation therapy directed toward a reduction in serum androgens and the inhibition of androgen receptor (AR) is generally the first therapy adopted. However, the patient's response to androgen ablation therapy is variable, and 20-30% of PCa cases become castration resistant (CRPCa). Several mechanisms can guide treatment resistance to anti-AR molecules. In this regard, AR-dependent and -independent resistance mechanisms can be distinguished within the AR pathway. In this article, we investigate the multitude of AR signaling aspects, encompassing the biological structure of AR, current AR-targeted therapies, mechanisms driving resistance to AR, and AR crosstalk with other pathways, in an attempt to provide a comprehensive review for the PCa research community. We also summarize the new anti-AR drugs approved in non-metastatic castration-resistant PCa, in the castration-sensitive setting, and combination therapies with other drugs

    Superradiance and Phase Multistability in Circuit Quantum Electrodynamics

    Full text link
    By modeling the coupling of multiple superconducting qubits to a single cavity in the circuit-quantum electrodynamics (QED) framework we find that it should be possible to observe superradiance and phase multistability using currently available technology. Due to the exceptionally large couplings present in circuit-QED we predict that superradiant microwave pulses should be observable with only a very small number of qubits (just three or four), in the presence of energy relaxation and non-uniform qubit-field coupling strengths. This paves the way for circuit-QED implementations of superradiant state readout and decoherence free subspace state encoding in subradiant states. The system considered here also exhibits phase multistability when driven with large field amplitudes, and this effect may have applications for collective qubit readout and for quantum feedback protocols.Comment: Published Versio
    • …
    corecore