3,113 research outputs found

    Semiempirical methods for computing turbulent flows

    Get PDF
    Two semiempirical theories which provide a basis for determining the turbulent friction and heat exchange near a wall are presented: (1) the Prandtl-Karman theory, and (2) the theory utilizing an equation for the energy of turbulent pulsations. A comparison is made between exact numerical methods and approximate integral methods for computing the turbulent boundary layers in the presence of pressure, blowing, or suction gradients. Using the turbulent flow around a plate as an example, it is shown that, when computing turbulent flows with external turbulence, it is preferable to construct a turbulence model based on the equation for energy of turbulent pulsations

    Inverse problems of symbolic dynamics

    Full text link
    This paper reviews some results regarding symbolic dynamics, correspondence between languages of dynamical systems and combinatorics. Sturmian sequences provide a pattern for investigation of one-dimensional systems, in particular interval exchange transformation. Rauzy graphs language can express many important combinatorial and some dynamical properties. In this case combinatorial properties are considered as being generated by substitutional system, and dynamical properties are considered as criteria of superword being generated by interval exchange transformation. As a consequence, one can get a morphic word appearing in interval exchange transformation such that frequencies of letters are algebraic numbers of an arbitrary degree. Concerning multydimensional systems, our main result is the following. Let P(n) be a polynomial, having an irrational coefficient of the highest degree. A word ww (w=(w_n), n\in \nit) consists of a sequence of first binary numbers of {P(n)}\{P(n)\} i.e. wn=[2{P(n)}]w_n=[2\{P(n)\}]. Denote the number of different subwords of ww of length kk by T(k)T(k) . \medskip {\bf Theorem.} {\it There exists a polynomial Q(k)Q(k), depending only on the power of the polynomial PP, such that T(k)=Q(k)T(k)=Q(k) for sufficiently great kk.

    Subexponential estimations in Shirshov's height theorem (in English)

    Full text link
    In 1993 E. I. Zelmanov asked the following question in Dniester Notebook: "Suppose that F_{2, m} is a 2-generated associative ring with the identity x^m=0. Is it true, that the nilpotency degree of F_{2, m} has exponential growth?" We show that the nilpotency degree of l-generated associative algebra with the identity x^d=0 is smaller than Psi(d,d,l), where Psi(n,d,l)=2^{18} l (nd)^{3 log_3 (nd)+13}d^2. We give the definitive answer to E. I. Zelmanov by this result. It is the consequence of one fact, which is based on combinatorics of words. Let l, n and d>n be positive integers. Then all the words over alphabet of cardinality l which length is greater than Psi(n,d,l) are either n-divided or contain d-th power of subword, where a word W is n-divided, if it can be represented in the following form W=W_0 W_1...W_n such that W_1 >' W_2>'...>'W_n. The symbol >' means lexicographical order here. A. I. Shirshov proved that the set of non n-divided words over alphabet of cardinality l has bounded height h over the set Y consisting of all the words of degree <n. Original Shirshov's estimation was just recursive, in 1982 double exponent was obtained by A.G.Kolotov and in 1993 A.Ya.Belov obtained exponential estimation. We show, that h<Phi(n,l), where Phi(n,l) = 2^{87} n^{12 log_3 n + 48} l. Our proof uses Latyshev idea of Dilworth theorem application.Comment: 21 pages, Russian version of the article is located at the link arXiv:1101.4909; Sbornik: Mathematics, 203:4 (2012), 534 -- 55

    Homogenization of nonlocal wire metamaterial via a renormalization approach

    Full text link
    It is well known that defining a local refractive index for a metamaterial requires that the wavelength be large with respect to the scale of its microscopic structure (generally the period). However, the converse does not hold. There are simple structures, such as the infinite, perfectly conducting wire medium, which remain non-local for arbitrarily large wavelength-to-period ratios. In this work we extend these results to the more realistic and relevant case of finite wire media with finite conductivity. In the quasi-static regime the metamaterial is described by a non-local permittivity which is obtained analytically using a two-scale renormalization approach. Its accuracy is tested and confirmed numerically via full vector 3D finite element calculations. Moreover, finite wire media exhibit large absorption with small reflection, while their low fill factor allows considerable freedom to control other characteristics of the metamaterial such as its mechanical, thermal or chemical robustness.Comment: 8 pages on two columns, 7 figures, submitted to Phys. Rev.

    Long-period cosmic ray variations and their altitude dependence

    Get PDF
    Long-period variations were studied from the data of ground-based cosmic ray (CR) observations. In spite of a large value of an 2-year variation, it is more difficult to obtain its spectrum than the spectrum of a solar diurnal variation. Serious obstacles are caused by changes in individual detectors and in the whole world wide network of CR detectors, by the absence of continuity and uniformity of data series, by various apparatus variations. In discrimination and investigation of long-period variations an important and determining point is preparation and preliminary analysis of data
    corecore