2,757 research outputs found

    Subexponential estimations in Shirshov's height theorem (in English)

    Full text link
    In 1993 E. I. Zelmanov asked the following question in Dniester Notebook: "Suppose that F_{2, m} is a 2-generated associative ring with the identity x^m=0. Is it true, that the nilpotency degree of F_{2, m} has exponential growth?" We show that the nilpotency degree of l-generated associative algebra with the identity x^d=0 is smaller than Psi(d,d,l), where Psi(n,d,l)=2^{18} l (nd)^{3 log_3 (nd)+13}d^2. We give the definitive answer to E. I. Zelmanov by this result. It is the consequence of one fact, which is based on combinatorics of words. Let l, n and d>n be positive integers. Then all the words over alphabet of cardinality l which length is greater than Psi(n,d,l) are either n-divided or contain d-th power of subword, where a word W is n-divided, if it can be represented in the following form W=W_0 W_1...W_n such that W_1 >' W_2>'...>'W_n. The symbol >' means lexicographical order here. A. I. Shirshov proved that the set of non n-divided words over alphabet of cardinality l has bounded height h over the set Y consisting of all the words of degree <n. Original Shirshov's estimation was just recursive, in 1982 double exponent was obtained by A.G.Kolotov and in 1993 A.Ya.Belov obtained exponential estimation. We show, that h<Phi(n,l), where Phi(n,l) = 2^{87} n^{12 log_3 n + 48} l. Our proof uses Latyshev idea of Dilworth theorem application.Comment: 21 pages, Russian version of the article is located at the link arXiv:1101.4909; Sbornik: Mathematics, 203:4 (2012), 534 -- 55

    Sub-wavelength imaging at infrared frequencies using an array of metallic nanorods

    Full text link
    We demonstrate that an array of metallic nanorods enables sub-wavelength (near-field) imaging at infrared frequencies. Using an homogenization approach, it is theoretically proved that under certain conditions the incoming radiation can be transmitted by the array of nanorods over a significant distance with fairly low attenuation. The propagation mechanism does not involve a resonance of material parameters and thus the resolution is not strongly affected by material losses and has wide bandwidth. The sub-wavelength imaging with λ/10\lambda/10 resolution by silver rods at 30 THz is demonstrated numerically using full-wave electromagnetic simulator.Comment: 12 pages, 16 figures, submitted to PR

    Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells

    Full text link
    We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques

    Schnabl's L_0 Operator in the Continuous Basis

    Get PDF
    Following Schnabl's analytic solution to string field theory, we calculate the operators L0,L0†{\cal L}_0,{\cal L}_0^\dagger for a scalar field in the continuous κ\kappa basis. We find an explicit and simple expression for them that further simplifies for their sum, which is block diagonal in this basis. We generalize this result for the bosonized ghost sector, verify their commutation relation and relate our expressions to wedge state representations.Comment: 1+16 pages. JHEP style. Typos correcte

    Spontaneous radiation of a finite-size dipole emitter in hyperbolic media

    Get PDF
    We study the radiative decay rate and Purcell effect for a finite-size dipole emitter placed in a homogeneous uniaxial medium. We demonstrate that the radiative rate is strongly enhanced when the signs of the longitudinal and transverse dielectric constants of the medium are opposite, and the isofrequency contour has a hyperbolic shape. We reveal that the Purcell enhancement factor remains finite even in the absence of losses, and it depends on the emitter size.Comment: 6 pages, 3 figure

    Normalization anomalies in level truncation calculations

    Full text link
    We test oscillator level truncation regularization in string field theory by calculating descent relations among vertices, or equivalently, the overlap of wedge states. We repeat the calculation using bosonic, as well as fermionic ghosts, where in the bosonic case we do the calculation both in the discrete and in the continuous basis. We also calculate analogous expressions in field level truncation. Each calculation gives a different result. We point out to the source of these differences and in the bosonic ghost case we pinpoint the origin of the difference between the discrete and continuous basis calculations. The conclusion is that level truncation regularization cannot be trusted in calculations involving normalization of singular states, such as wedge states, rank-one squeezed state projectors and string vertices.Comment: 1+20 pages, 6 figures. v2: Ref. added, typos correcte

    Witten's Vertex Made Simple

    Full text link
    The infinite matrices in Witten's vertex are easy to diagonalize. It just requires some SL(2,R) lore plus a Watson-Sommerfeld transformation. We calculate the eigenvalues of all Neumann matrices for all scale dimensions s, both for matter and ghosts, including fractional s which we use to regulate the difficult s=0 limit. We find that s=1 eigenfunctions just acquire a p term, and x gets replaced by the midpoint position.Comment: 24 pages, 2 figures, RevTeX style, typos correcte

    Temperature evolution of magnetic structure of HoFeO3_3 by single crystal neutron diffraction

    Get PDF
    We have investigated the temperature evolution of the magnetic structures of HoFeO3_3 by single crystal neutron diffraction. The three different magnetic structures found as a function of temperature for \hfo\ are described by the magnetic groups Pb′'n′21'2_1, Pbn212_1 and Pbn′21′'2_1' and are stable in the temperature ranges ≈\approx 600-55~K, 55-37~K and 35>T>2>T>2~K respectively. In all three the fundamental coupling between the Fe sub-lattices remains the same and only their orientation and the degree of canting away from the ideal axial direction varies. The magnetic polarisation of the Ho sub-lattices in these two higher temperature regions, in which the major components of the Fe moment lie along xx and yy, is very small. The canting of the moments from the axial directions is attributed to the antisymmetric interactions allowed by the crystal symmetry. They include contributions from single ion anisotropy as well as the Dzyaloshinski antisymmetric exchange. In the low temperature phase two further structural transitions are apparent in which the spontaneous magnetisation changes sign with respect to the underlying antiferromagnetic configuration. In this temperature range the antisymmetric exchange energy varies rapidly as the the Ho sub-lattices begin to order. So long as the ordered Ho moments are small the antisymmetric exchange is due only to Fe-Fe interactions, but as the degree of Ho order increases the Fe-Ho interactions take over whilst at the lowest temperatures, when the Ho moments approach saturation the Ho-Ho interactions dominate. The reversals of the spontaneous magnetisation found in this study suggest that in \hfo\ the sums of the Fe-Fe and Ho-Ho antisymmetric interactions have the same sign as one another, but that of the Ho-Fe terms is opposite
    • …
    corecore