306 research outputs found

    Voltage-induced strain control of the magnetic anisotropy in a Ni thin film on flexible substrate

    Full text link
    Voltage-induced magnetic anisotropy has been quantitatively studied in polycrystalline Ni thin film deposited on flexible substrate using microstrip ferromagnetic resonance. This anisotropy is induced by a piezoelectric actuator on which the film/substrate system was glued. In our work, the control of the anisotropy through the applied elastic strains is facilitated by the compliant elastic behavior of the substrate. The in-plane strains in the film induced by the piezoelectric actuation have been measured by the digital image correlation technique. Non-linear variation of the resonance field as function of the applied voltage is found and well reproduced by taking into account the non linear and hysteretic variations of the induced in-plane strains as function of the applied voltage. Moreover, we show that initial uniaxial anisotropy attributed to compliant substrate curvature is fully compensated by the voltage induced anisotropy.Comment: 7 pages, 6 figures, published in the Journal of Applied Physic

    Micro-strip ferromagnetic resonance study of strain-induced anisotropy in amorphous FeCuNbSiB film on flexible substrate

    Full text link
    The magnetic anisotropy of a FeCuNbSiB (Finemet) film deposited on Kapton has been studied by micro-strip ferromagnetic resonance technique. We have shown that the flexibility of the substrate allows a good transmission of elastic strains generated by a piezoelectric actuator. Following the resonance field angular dependence, we also demonstrate the possibility of controlling the magnetic anisotropy of the film by applying relatively small voltages to the actuator. Moreover, a suitable model taking into account the effective elastic strains measured by digital image correlation and the effective elastic coefficients measured by Brillouin light scattering, allowed to deduce the magnetostrictive coefficient. This latter was found to be positive (λ=16×10−6(\lambda=16\times10^{-6}) and consistent with the usually reported values for bulk amorphous FeCuNbSiB.Comment: 9 pages, 8 figure

    Structural, static and dynamic magnetic properties of CoMnGe thin films on a sapphire a-plane substrate

    Full text link
    Magnetic properties of CoMnGe thin films of different thicknesses (13, 34, 55, 83, 100 and 200 nm), grown by RF sputtering at 400{\deg}C on single crystal sapphire substrates, were studied using vibrating sample magnetometry (VSM) and conventional or micro-strip line (MS) ferromagnetic resonance (FMR). Their behavior is described assuming a magnetic energy density showing twofold and fourfold in-plane anisotropies with some misalignment between their principal directions. For all the samples, the easy axis of the fourfold anisotropy is parallel to the c-axis of the substrate while the direction of the twofold anisotropy easy axis varies from sample to sample and seems to be strongly influenced by the growth conditions. Its direction is most probably monitored by the slight unavoidable angle of miscut the Al2O3 substrate. The twofold in-plane anisotropy field is almost temperature independent, in contrast with the fourfold field which is a decreasing function of the temperature. Finally, we study the frequency dependence of the observed line-width of the resonant mode and we conclude to a typical Gilbert damping constant of 0.0065 for the 55-nm-thick film.Comment: 7 pages, 7 figures, To be published (Journal of Applied Physics

    Bending strain-tunable magnetic anisotropy in Co2FeAl Heusler thin film on Kapton

    Full text link
    Bending effect on the magnetic anisotropy in 20 nm Co2_{2}FeAl Heusler thin film grown on Kapton\textregistered{} has been studied by ferromagnetic resonance and glued on curved sample carrier with various radii. The results reported in this letter show that the magnetic anisotropy is drastically changed in this system by bending the thin films. This effect is attributed to the interfacial strain transmission from the substrate to the film and to the magnetoelastic behavior of the Co2_{2}FeAl film. Moreover two approaches to determine the in-plane magnetostriction coefficient of the film, leading to a value that is close to λCFA=14×10−6\lambda^{CFA}=14\times10^{-6}, have been proposed.Comment: 4 pages, 4 figure
    • 

    corecore