498 research outputs found
Operando Label-free Optical Imaging of Solution-Phase Ion Transport and Electrochemistry
Ion transport is a fundamental process in many physical, chemical, and
biological phenomena, and especially in electrochemical energy conversion and
storage. Despite its immense importance, demonstrations of label-free,
spatially and temporally resolved ion imaging in the solution phase under
operando conditions are not widespread. Here we spatiotemporally map ion
concentration gradient evolution in solution and yield ion transport parameters
by refining interferometric reflection microscopy, obviating the need for
absorptive or fluorescent labels. As an example, we use an electrochemical cell
with planar electrodes to drive concentration gradients in a ferricyanide-based
aqueous redox electrolyte, and we observe the lateral spatiotemporal evolution
of ions via concentration-dependent changes to the refractive index. Analysis
of an evolving spatiotemporal ion distribution directly yields the diffusivity
of the redox-active species. The simplicity of this approach makes it amenable
to probing local ion transport behavior in a wide range of electrochemical,
bioelectronic, and electrophysiological systems.Comment: includes supporting informatio
Comprehensive analysis of design principles in the context of Industry 4.0
[ES] Los sistemas de producción han evolucionado los últimos años gracias a avances tecnológicos recientes e innovaciones en el proceso de manufactura. El termino Industria 4.0 se ha convertido en prioridad y objeto de estudio para empresas, centros de investigación y universidades, sin existir un consenso generalmente aceptado del término. Como resultado es difícil diseñar e implementar soluciones de Industria 4.0 a nivel académico, científico o empresarial. La contribución de este documento se centra en proporcionar un análisis del significado e implicaciones de Industria 4.0 y exponer de forma detallada 17 principios de diseño fundamentales obtenidos a través de un estudio de mapeo sistemático. Estos principios son eficiencia, integración, flexibilidad, descentralización, personalización, virtualización, seguridad, es holística, orientada a servicios, ubicua, colaborativa, modular, robusta, utiliza información en tiempo real, toma decisiones optimizadas por datos, equilibra la vida laboral y es autónoma e inteligente. A través de estos principios, ingenieros e investigadores están capacitados para investigar e implementar escenarios apropiados de Industria 4.0.[EN] Production systems have evolved in the last years thanks to the recent technological advances and innovations in the manufacturing process. The Industry 4.0 term has become a priority and object of study for companies, research centers and universities, but there is not a generally accepted consensus for the term. As a result, is difficult design and implementation appropriate Industry 4.0 solutions at academic, scientific or business level. The contribution of this paper focuses on providing an analysis of Industry 4.0 meaning and implications and exposes in detail 17 fundamental design principles obtained by a systematic mapping study method. These principles are efficiency, integration, flexibility, decentralization, personalization, virtualization, security, is holistic, ubiquitous, collaborative, modular, robust, use information in real time, makes optimized decisions driven by data, is service-oriented, work life balance and is autonomous and intelligent. With these design principles, engineers and researchers have the capacity to research and implement appropriate Industry 4.0 scenarios.Belman-Lopez, CE.; Jiménez-García, JA.; Hernández-González, S. (2020). Análisis exhaustivo de los principios de diseño en el contexto de Industria 4.0. Revista Iberoamericana de Automática e Informática industrial. 17(4):432-447. https://doi.org/10.4995/riai.2020.12579OJS432447174Ahmad, A., & Babar, M. (2016). Software architectures for robotic systems: A systematic mapping study. The Journal of Systems and Software, 16-39. https://doi.org/10.1016/j.jss.2016.08.039Alexopoulos, K., Sipsas, K., Xanthakis, E., Makris, S., & Mourtzis, D. (2018). An industrial Internet of things based platform for context-aware information services in manufacturing. International Journal of Computer Integrated Manufacturing, 1-14. https://doi.org/10.1080/0951192X.2018.1500716Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). Journal of Innovation Management, 16-21. https://doi.org/10.24840/2183-0606_003.004_0003Angulo, P., Guzmán, C., Jiménez, G., & Romero, D. (2016). A service-oriented architecture and its ICT infrastructure to support eco-efficiency performance monitoring in manufacturing enterprises. International Journal of Computer Integrated Manufacturing, 202-214. https://doi.org/10.1080/0951192X.2016.1145810Babiceanua, R., & Seker, R. (2016). Big Data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook. Computers in Industry, 128-137. https://doi.org/10.1016/j.compind.2016.02.004Bagheri, B., Yang, S., Kao, H.-A., & Lee, J. (2015). Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment. IFAC- PapersOnLine, 1622 - 1627. https://doi.org/10.1016/j.ifacol.2015.06.318Beysolow II, T. (2017). Introduction to Deep Learning Using R. San Francisco, California, USA: Apress. https://doi.org/10.1007/978-1-4842-2734-3Bibby, L., & Dehe, B. (2018). Defining and assessing industry 4.0 maturity levels - case of the defence sector. Production Planning & Control, 1-15. https://doi.org/10.1080/09537287.2018.1503355Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. International Journal of Information and Communication Engineering, 1-8.Caggiano, A. (2018). Cloud-based manufacturing process monitoring for smart diagnosis services. International Journal of Computer Integrated Manufacturing, 31(7), 612-623. https://doi.org/10.1080/0951192X.2018.1425552Cervantes Maceda, H., Velasco-Elizondo, P., & Castro Careaga, L. (2016). Arquitectura de Software. Conceptos y ciclo de desarrollo. Ciudad de México, México: CENGAGE Learning.Charro, A., & Schaefer, D. (2018). Cloud Manufacturing as a new type of Product- Service System. International Journal of Computer Integrated Manufacturing, 1018-1033. https://doi.org/10.1080/0951192X.2018.1493228Chen, T., & Tsai, H.-R. (2016). Ubiquitous manufacturing: Current practices, challenges, and opportunities. Robotics and Computer-Integrated Manufacturing, 1-7. https://doi.org/10.1016/j.rcim.2016.01.001Chen, X.-W., & Lin, X. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Xplore, 514 - 525. https://doi.org/10.1109/ACCESS.2014.2325029Chen, Y. (2017). Integrated and Intelligent Manufacturing: Perspectives and Enablers. Engineering, 588-595. https://doi.org/10.1016/J.ENG.2017.04.009Chiu, Y.-C., Cheng, F.-T., & Huang, H.-C. (2017). Developing a factory-wide intelligent predictive maintenance system based on Industry 4.0. Journal of the Chinese Institute of Engineers, 1-11. https://doi.org/10.1080/02533839.2017.1362357Ciffolilli, A., & Muscio, A. (2018). Industry 4.0: national and regional comparative advantages in key enabling technologies. European Planning Studies, 1-22. https://doi.org/10.1080/09654313.2018.1529145Clusterplattform Deutschland . (2019). Clusterplattform Deutschland. Obtenido de Clusterplattform Deutschland: https://www.clusterplattform.de/CLUSTER/Navigation/DE/Home/home.htmlCobo, M., Jürgens, B., Herrero-Solana, V., Herrera-Viedma, E., & Martínez, M. (2018). Industry 4.0: a perspective based on bibliometric analysis. Procedia Computer Science, 364-371. https://doi.org/10.1016/j.procs.2018.10.278Crawford, M., & ASME.org. (01 de Julio de 2018). How Industry 4.0 Impacts Engineering Design. Obtenido de ASME: https://www.asme.org/engineering- topics/articles/manufacturing-design/industry-40-impacts-engineering-designdefinicionde.org. (27 de Diciembre de 2016). Definición de ubicuo - Que es según la RAE? Obtenido de Definición de las palabras: http://definicionde.org/ubicuo/Delaram, J., & Valilai, O. (2016). Development of a Novel Solution to Enable Integration and Interoperability for Cloud Manufacturing. Procedia CIRP, 6-11. https://doi.org/10.1016/j.procir.2016.07.056Delicato, F., Al-Anbuky, A., & Wang, K.-K. (2019). Editorial: Smart Cyber-Physical Systems: Toward Pervasive Intelligence systems. Future Generation Computer Systems, 1-6. https://doi.org/10.1016/j.future.2019.06.031Deloitte. (05 de 10 de 2018). ¿Qué es la Industria 4.0? Obtenido de Deloite.: https://www2.deloitte.com/es/es/pages/manufacturing/articles/que-es-la- industria-4.0.htmlDilberoglua, U., Bahar, G., Yaman, U., & Dolen, M. (2017). The role of additive manufacturing in the era of Industry 4.0. International Conference on Flexible Automation and Intelligent Manufacturing (págs. 1-10). Italia: Procedia Manufacturing. https://doi.org/10.1016/j.promfg.2017.07.148European Secretariat for Cluster Analysis. (2017). Quality audit: Gold Label of the European Cluster Excellence Initiative (ECEI). Obtenido de ESCA: https://www.cluster-analysis.org/gold-label-newEvans, P., & Annunziata, M. (26 de Noviembre de 2012). Industrial Internet: Pushing the Boundaries of Minds and Machines. Obtenido de GE: https://www.ge.com/docs/chapters/Industrial_Internet.pdfFatorachian, H., & Kazemi, H. (2018). A critical investigation of Industry 4.0 in manufacturing: theoretical operationalisation framework. Production Planning & Control, 633-644. https://doi.org/10.1080/09537287.2018.1424960Federal Minister of Education and Research. (2013). Deutschlands Spitzencluster Germany's Leading-Edge Clusters. Obtenido de Federal Ministry of Education and Research (BMBF): https://www.hamburg.de/contentblob/2593364/3113df3e6f569c97b937bd8747 5564db/data/deutschlands-spitzencluster.pdfFerreira,, J., Sarraipa, J., Ferro-Beca, M., Agostinho, C., Costa, R., & Jardim-Goncalves, R. (2016). End-to-end manufacturing in factories of the future. International Journal of Computer Integrated Manufacturing, 1-14. https://doi.org/10.1080/0951192X.2016.1185155Fettermann, D., Cavalcante, C., Domingues de Almeida, T., & Tortorella, G. (2018). How does Industry 4.0 contribute to operations management? Journal of Industrial and Production Engineering, 1-15. https://doi.org/10.1080/21681015.2018.1462863Francalanza, E., Borg, J., & Constantinescu, C. (2018). Approaches for handling wicked manufacturing system design problems. Procedia CIRP, 67, 134-139. https://doi.org/10.1016/j.procir.2017.12.189García, M., Irisarri, E., Pérez, F., Estévez, E., & Marcos, M. (2017). Arquitectura de Automatización basada en Sistemas Ciberfísicos para la Fabricación Flexible en la Industria de Petróleo y Gas. Revista Iberoamericana de Automática e Informática Industrial, 1-11. https://doi.org/10.4995/riai.2017.8823Germany Trade & Invest (GTAI). (1 de Julio de 2014). Industrie 4.0 Smart Manufacturing for the future. Obtenido de Germany Trade & Invest (GTAI): https://www.gtai.de/GTAI/Content/CN/Invest/_SharedDocs/Downloads/GTAI/ Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdfGhobakhloo, M. (2019). Determinants of information and digital technology implementation for smart manufacturing. International Journal of Production Research, 1-23. https://doi.org/10.1080/00207543.2019.1630775Götz, M., & Jankowska, B. (2017). Clusters and Industry 4.0 - do they fit together? European Planning Studies, 1633-1653. https://doi.org/10.1080/09654313.2017.1327037Gregor, S. (2002). A Theory of Theories in Information Systems. Information Systems Foundations. Building the Theoretical, 1 - 20.Gregor, S. (2009). Building Theory in the Sciences of the Artificial. Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology (págs. 1- 10). Philadelphia, Pennsylvania, USA: ACM Digital Library. https://doi.org/10.1145/1555619.1555625Henzel, R., & Herzwurm, G. (2018). Cloud Manufacturing: A state-of-the-art survey of current issues. CIRP, 947-952. https://doi.org/10.1016/j.procir.2018.03.055Hermann, M., Otto, B., & Pentek, T. (2015). Design Principles for Industrie 4.0 Scenarios: A Literature Review. ResearchGate, 1-16. https://doi.org/10.13140/RG.2.2.29269.22248Hernández A., A., Figueroa F., V., & Jiménez G., J. (2018). Propuesta de una metodología de diagnóstico para identificar los requerimientos tecnológicos de una empresa tradicional de manufactura para evolucionar a Industria 4.0. Celaya, Guanajuato, México: Tecnológico Nacional de México en Celaya.Huang, S., & Yan, Y. (2019). Design of delayed reconfigurable manufacturing system based on part family grouping and machine selection. International Journal of Production Research, 1-19. https://doi.org/10.1080/00207543.2019.1654631Ibarra, D., Ganzarain, J., & Igartua, J. (2017). Business model innovation through Industry 4.0: A review. Procedia Manufacturing, 4-10. https://doi.org/10.1016/j.promfg.2018.03.002Jardim-Goncalves, R., Romero, D., & Grilo, A. (2017). Factories of the future: challenges and leading innovations in intelligent manufacturing. International Journal of Computer Integrated Manufacturing, 30, 4-14.Jazdi, N. (17 de Jolio de 2014). Cyber Physical Systems in the Context of Industry 4.0. IEEE International Conference on Automation, Quality and Testing, Robotics. (págs. 1-3). Cluj-Napoca, Romania: IEEE. https://doi.org/10.1109/AQTR.2014.6857843Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group. National Academy of Science and Engineering (acatech)., 1-82.Kamble, S., Gunasekaran, A., & Gawankar, S. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 408-425. https://doi.org/10.1016/j.psep.2018.05.009Khan, K., Kunz, R., Kleijnen, J., & Antes, G. (2003). Five steps to conducting a systematic review. Journal of the royal society of medicine, 118-121. https://doi.org/10.1177/014107680309600304Kipper, L., Furstenau, L., Hoppe, D., Frozza, R., & Iespen, S. (2019). Scopus scientific mapping production in industry 4.0 (2011-2018): a bibliometric analysis. International Journal of Production Research, 1-24. doi:https://doi.org/10.1080/00207543.2019.1671625Klingenberg, C. (2017). Industry 4.0: what makes it a revolution? EurOMA (págs. 1-11). ResearchGate.Kusiak, A. (2017). Smart manufacturing. International Journal of Production Research, 508-517. https://doi.org/10.1080/00207543.2017.1351644Laudante, E. (2017). Industry 4.0, Innovation and Design. A new approach for ergonomic analysis in manufacturing system. An International Journal for All Aspects of Design, 1-12. https://doi.org/10.1080/14606925.2017.1352784Lee, J., Ardakani, H., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. Procedia CIRP, 3-7. https://doi.org/10.1016/j.procir.2015.08.026Lee, J., Bagheri, B., & Kao, H.-A. (2014). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Society of Manufacturing Engineers (SME), 18- 23. https://doi.org/10.1016/j.mfglet.2014.12.001Lee, J., Kao, H.-A., & Yang, S. (2014). Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP, 16, 3-8. https://doi.org/10.1016/j.procir.2014.02.001Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 1-10. https://doi.org/10.1016/j.jii.2017.04.005Luque, A., Peralta, E., De las Heras, A., & Córdoba, A. (2017). State of Industry 4.0 in the Andalusian food sector. Procedia Manufacturing, 1199-1205. https://doi.org/10.1016/j.promfg.2017.09.195Macchi, D., & Solari, M. (2012). Mapeo sistemático de la literatura sobre la Adopción de Inspecciones de Software. Universidad ORT de Uruguay, 1 - 8.MIT Technology Review. (31 de Octubre de 2018). "Digital twin", un gemelo virtual para aconsejar a la Industria 4.0. Obtenido de MIT Technology Review: https://www.technologyreview.es/s/10696/digital-twin-un-gemelo-virtual-para- aconsejar-la-industria-40Moghaddam, S., Houshmand, M., Saitou, K., & Valilai, O. (2019). Configuration design of scalable reconfigurable manufacturing systems for part family. International Journal of Production Research, 1-24. https://doi.org/10.1080/00207543.2019.1620365Moktadir, M., Ali, S., Kusi-Sarpong, S., & Ali Shaikh, M. (2018). Assessing challenges for implementing Industry 4.0: Implications for process safety and environmental protection. Process Safety and Environmental Protection, 730- 741. https://doi.org/10.1016/j.psep.2018.04.020Muhuri, P., Shukla, A., & Abraham, A. (2019). Industry 4.0: A bibliometric analysis and detailed overview. Engineering Applications of Artificial Intelligence, 218- 235. https://doi.org/10.1016/j.engappai.2018.11.007Nassehi, A., Schaefer, D., Wu, D., Xu, X., & Zaeh, M. (2018). Special issue on 'Cyber-physical product creation for Industry 4.0'. International Journal of Computer Integrated Manufacturing, 611-611. https://doi.org/10.1080/0951192X.2018.1482106Netzwerk Smart Production. (01 de Enero de 2019). Smart Production. Obtenido de Netzwerk Smart Production: https://www.smartproduction.de/Neugebauer, R., Hippmann, S., Leis, M., & Landherr, M. (2016). Industrie 4.0 - From the Perspective of Applied Research. Procedia CIRP, 57, 2-7. https://doi.org/10.1016/j.procir.2016.11.002NIST. (16 de Abril de 2018). Framework for Improving Critical Infrastructure Cybersecurity. Obtenido de National Institute of Standards and Technology: https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdfNodehi, T., Jardim-Goncalves, R., Zutshi, A., & Grilo, A. (2015). ICIF: an intercloud interoperability framework for computing resource cloud providers in factories of the future. International Journal of Computer Integrated Manufacturing, 1-12. https://doi.org/10.1080/0951192X.2015.1067921Nunes, M., Pereira, A., & Alves, A. (2017). Smart products development approches for Industry 4.0. Manufacturing Engineering Society International Conference (págs. 1215-1222). Vigo, España: Procedia Manufacturing. https://doi.org/10.1016/j.promfg.2017.09.035Oesterreich, T., & Teuteberg, F. (2016). Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry, 121-139. https://doi.org/10.1016/j.compind.2016.09.006Packianathera, M., Davies, A., Harraden, S., Soman, S., & White, J. (2017). Data mining techniques applied to a manufacturing SME. Data mining techniques applied to a manufacturing SME, 123 - 128. https://doi.org/10.1016/j.procir.2016.06.120Pereira, A., & Romero, F. (2017). A review of the meaning and the implications of the Industry 4.0 concept. En P. Manufacturing (Ed.), Manufacturing Engineering Society International Conference (págs. 1206-1214). Vigo, España: Elsevier. https://doi.org/10.1016/j.promfg.2017.09.032Pereira, T., Barreto, L., & Amaral, A. (2017). Network and information security challenges within Industry 4.0 paradigm. Procedia Manufacturing, 1253-1260. https://doi.org/10.1016/j.promfg.2017.09.047Piedrahita, A., & Vélez Ángel, P. (2017). Control de calidad en sistemas crowdsourcing: un mapeo sistemático. Scientia et Technica, 1 - 10. https://doi.org/10.22517/23447214.13541Plattform Industrie 4.0. (2019). Plattform Industrie 4.0. Obtenido de Plattform Industrie 4.0: https://www.plattform- i40.de/PI40/Navigation/EN/ThePlatform/Background/background.htmlPorter, M. (2000). Location, Competition, and Economic Development: Local Clusters in a Global Economy. Economic Development Quarterly, 15-34. https://doi.org/10.1177/089124240001400105PWC. (01 de 01 de 2016). Industry 4.0: Building the Digital Enterprise. Obtenido de PWC: https://www.pwc.com/gx/en/industries/industries-4.0/landing- page/industry-4.0-building-your-digital-enterprise-april-2016.pdfQin, J., Liu, Y., & Grosvenor, R. (2016). A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP, 173-178. https://doi.org/10.1016/j.procir.2016.08.005Quintana, G., & Solari, M. (2012). Estudio de Mapeo Sistemático sobre Experimentos de Generación Automática de Casos de Prueba Estructurales. Universidad ORT de Uruguay, 1-10.Radziwon, A., Bilberg, A., Bogers, M., & Madsen, E. (2014). The Smart Factory: Exploring Adaptive and Flexible Manufacturing Solutions. Procedia Engineering, 1184 - 1190. https://doi.org/10.1016/j.proeng.2014.03.108Roblek, V., Meško, M., & Krapež, A. (2016). A Complex View of Industry 4.0. SAGE, 1-11. https://doi.org/10.1177/2158244016653987Rojko, A. (2017). Industry 4.0 Concept: Background and Overview. International Journal of Innovation Management, 1-14. https://doi.org/10.3991/ijim.v11i5.7072Román-Ibáñez, V., Jimeno-Morenilla, A., & Pujol-López, F. (2018). Distributed monitoring of heterogeneous robotic cells. A proposal for the footwear industry 4.0. International Journal of Computer Integrated Manufacturing, 1-16. https://doi.org/10.1080/0951192X.2018.1529432Rosin, F., Forget, P., Lamouri, S., & Pellerin, R. (2019). Impacts of Industry 4.0 technologies on Lean principles. International Journal of Production Research, 1-19. https://doi.org/10.1080/00207543.2019.1672902Rossit, D., Tohmé, F., & Frutos, M. (2018). Industry 4.0: Smart Scheduling. International Journal of Production Research. https://doi.org/10.1080/00207543.2018.1504248Russo, J., & Solari, M. (2017). Estudio de Mapeo Sistemático sobre Arquitecturas de Software para Big Data. Conferencia Iberoamericana en Software Engineering (págs. 1 - 14). Buenos Aires, Argentina: ResearchGate.Schmidt, R., Möhring, M., Härting, R.-C., Reichstein, C., Neumaier, P., & Jozinović, P. (2015). Industry 4.0 - Potentials for Creating Smart Products: Empirical Research Results. Business Information Systems, 16-27. https://doi.org/10.1007/978-3-319-19027-3_2Schuh, G., Potente, T., Wesch-Potente, C., Weber, A., & Prote, J.-P. (2014). Collaboration Mechanisms to increase Productivity in the Context of Industrie 4.0. Procedia CIRP, 51 - 56. https://doi.org/10.1016/j.procir.2014.05.016Schumacher, A., Erol, S., & Sihn, W. (2016). A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP, 161 - 166. https://doi.org/10.1016/j.procir.2016.07.040Shafiq, S., Sanin, C., Toro, C., & Szczerbicki, E. (2015). Virtual Engineering Object (VEO): Toward Experience-Based Design and Manufacturing for Industry 4.0. Cybernetics and Systems: An International Journal, 1-17. https://doi.org/10.1080/01969722.2015.1007734Shariatzadeh, N., Lundholm, T., Lindberg, L., & Sivard, G. (2016). Integration of digital factory with smart fa
Recommended from our members
miRNA contributions to pediatric-onset multiple sclerosis inferred from GWAS.
ObjectiveOnset of multiple sclerosis (MS) occurs in childhood for approximately 5% of cases (pediatric MS, or ped-MS). Epigenetic influences are strongly implicated in MS pathogenesis in adults, including the contribution from microRNAs (miRNAs), small noncoding RNAs that affect gene expression by binding target gene mRNAs. Few studies have specifically examined miRNAs in ped-MS, but individuals developing MS at an early age may carry a relatively high burden of genetic risk factors, and miRNA dysregulation may therefore play a larger role in the development of ped-MS than in adult-onset MS. This study aimed to look for evidence of miRNA involvement in ped-MS pathogenesis.MethodsGWAS results from 486 ped-MS cases and 1362 controls from the U.S. Pediatric MS Network and Kaiser Permanente Northern California membership were investigated for miRNA-specific signals. First, enrichment of miRNA-target gene network signals was evaluated using MIGWAS software. Second, SNPs in miRNA genes and in target gene binding sites (miR-SNPs) were tested for association with ped-MS, and pathway analysis was performed on associated target genes.ResultsMIGWAS analysis showed that miRNA-target gene signals were enriched in GWAS (P = 0.038) and identified 39 candidate biomarker miRNA-target gene pairs, including immune and neuronal signaling genes. The miR-SNP analysis implicated dysregulation of miRNA binding to target genes in five pathways, mainly involved in immune signaling.InterpretationEvidence from GWAS suggests that miRNAs play a role in ped-MS pathogenesis by affecting immune signaling and other pathways. Candidate biomarker miRNA-target gene pairs should be further studied for diagnostic, prognostic, and/or therapeutic utility
Empathy at Play:Embodying Posthuman Subjectivities in Gaming
In this article, we address the need for a posthuman account of the relationship between the avatar and player. We draw on a particular line of posthumanist theory associated closely with the work of Karen Barad, Rosi Braidotti and N. Katherine Hayles that suggests a constantly permeable, fluid and extended subjectivity, displacing the boundaries between human and other. In doing so, we propose a posthuman concept of empathy in gameplay, and we apply this concept to data from the first author’s 18-month ethnographic field notes of gameplay in the MMORPG World of Warcraft. Exploring these data through our analysis of posthuman empathy, we demonstrate the entanglement of avatar–player, machine–human relationship. We show how empathy allows us to understand this relationship as constantly negotiated and in process, producing visceral reactions in the intra-connected avatar–player subject as well as moments of co-produced in-game action that require ‘affective matching’ between subjective and embodied experiences. We argue that this account of the avatar–player relationship extends research in game culture, providing a horizontal, non-hierarchical discussion of its most necessary interaction
New insights into perinatal testicular torsion
Perinatal testicular torsion is a relatively rare event that remains unrecognized in many patients or is suspected and treated accordingly only after an avoidable loss of time. The authors report their own experience with several patients, some of them quite atypical but instructive. Missed bilateral torsion is an issue, as are partial torsion, possible antenatal signs, and late presentation. These data are discussed together with the existing literature and may help shed new light on the natural course of testicular torsion and its treatment. The most important conclusion is that a much higher index of suspicion based on clinical findings is needed for timely detection of perinatal torsion. It is the authors’ opinion that immediate surgery is mandatory not only in suspected bilateral torsions but also in cases of possible unilateral torsions. There is no place for a more fatalistic “wait-and-see” approach. Whenever possible, even necrotic testes should not be removed during surgery because some endocrine function may be retained
Framing or Gaming? Constructing a Study to Explore the Impact of Option Presentation on Consumers
The manner in which choice is framed influences individuals’ decision-making. This research examines the impact of different decision constructs on decision-making by focusing on the more problematic decision constructs: the un-selected and pre-selected optout. The study employs eye-tracking with cued retrospective think-aloud (RTA) to combine quantitative and qualitative data. Eye-tracking will determine how long a user focuses on a decision construct before taking action. Cued RTA where the user will be shown a playback of their interaction will be used to explore their attitudes towards a decision construct and identify problematic designs. This pilot begins the second of a three phase study, which ultimately aims to develop a research model containing the theoretical constructs along with hypothesized causal associations between the constructs to reveal the impact of measures such as decision construct type, default value type and question framing have on the perceived value of the website and loyalty intentions
Geographical migration and fitness dynamics of Streptococcus pneumoniae
Streptococcus pneumoniae is a leading cause of pneumonia and meningitis worldwide. Many different serotypes co-circulate endemically in any one location1,2. The extent and mechanisms of spread and vaccine-driven changes in fitness and antimicrobial resistance remain largely unquantified. Here using geolocated genome sequences from South Africa (n = 6,910, collected from 2000 to 2014), we developed models to reconstruct spread, pairing detailed human mobility data and genomic data. Separately, we estimated the population-level changes in fitness of strains that are included (vaccine type (VT)) and not included (non-vaccine type (NVT)) in pneumococcal conjugate vaccines, first implemented in South Africa in 2009. Differences in strain fitness between those that are and are not resistant to penicillin were also evaluated. We found that pneumococci only become homogenously mixed across South Africa after 50 years of transmission, with the slow spread driven by the focal nature of human mobility. Furthermore, in the years following vaccine implementation, the relative fitness of NVT compared with VT strains increased (relative risk of 1.68; 95% confidence interval of 1.59–1.77), with an increasing proportion of these NVT strains becoming resistant to penicillin. Our findings point to highly entrenched, slow transmission and indicate that initial vaccine-linked decreases in antimicrobial resistance may be transient
- …