17 research outputs found

    The Contribution of Epigenetic Inheritance Processes on Age-Related Cognitive Decline and Alzheimer's Disease

    Get PDF
    : During the last years, epigenetic processes have emerged as important factors for many neurodegenerative diseases, such as Alzheimer's disease (AD). These complex diseases seem to have a heritable component; however, genome-wide association studies failed to identify the genetic loci involved in the etiology. So, how can these changes be transmitted from one generation to the next? Answering this question would allow us to understand how the environment can affect human populations for multiple generations and explain the high prevalence of neurodegenerative diseases, such as AD. This review pays particular attention to the relationship among epigenetics, cognition, and neurodegeneration across generations, deepening the understanding of the relevance of heritability in neurodegenerative diseases. We highlight some recent examples of EI induced by experiences, focusing on their contribution of processes in learning and memory to point out new targets for therapeutic interventions. Here, we first describe the prominent role of epigenetic factors in memory processing. Then, we briefly discuss aspects of EI. Additionally, we summarize evidence of how epigenetic marks inherited by experience and/or environmental stimuli contribute to cognitive status offspring since better knowledge of EI can provide clues in the appearance and development of age-related cognitive decline and AD

    The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy

    Get PDF
    Antioxidants; Neurodegeneration; ResveratrolAntioxidantes; Neurodegeneración; ResveratrolAntioxidants; Neurodegeneració; ResveratrolWhile the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.This study was supported by the Ministerio de Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and Fondo Europeo de Desarrollo Regional (MINECO-FEDER) (PID2019-106285RB and PCIN-2015-229, and Generalitat de Catalunya (2017 SGR 106) to M.P. The work was funded by grants from the Hungarian Science Foundation (OTKA K 116525), and from the Semmelweis University (STIA-KFI-2020/132257/AOMBT/2020) to C.S

    Synergistic Neuroprotective Effects of a Natural Product Mixture against AD Hallmarks and Cognitive Decline in Caenorhabditis elegans and an SAMP8 Mice Model

    Get PDF
    The study of different natural products can provide a wealth of bioactive compounds, and more interestingly, their combination can exert a new strategy for several neurodegenerative diseases with major public health importance, such as Alzheimer's disease (AD). Here, we investigated the synergistic neuroprotective effects of a mixed extract composed of docosahexaenoic acid, Ginkgo biloba, D-pinitol, and ursolic acid in several transgenic Caenorhabditis elegans (C. elegans) and a senescence-accelerated prone mice 8 (SAMP8) model. First, we found a significantly higher survival percentage in the C. elegans group treated with the natural product mixture compared to the single extract-treated groups. Likewise, we found a significantly increased lifespan in group of C. elegans treated with the natural product mixture compared to the other groups, suggesting synergistic effects. Remarkably, we determined a significant reduction in Aβ plaque accumulation in the group of C. elegans treated with the natural product mixture compared to the other groups, confirming synergy. Finally, we demonstrated better cognitive performance in the group treated with the natural product mixture in both AD models (neuronal Aβ C. elegans strain CL2355 and the SAMP8 mice model), confirming the molecular results and unraveling the synergist effects of this combination. Therefore, our results proved the potential of this new natural product mixture for AD therapeutic strategies

    Chromatin modifiers MET-2 and SET-25 are required for behavioural and molecular inheritance after early-life toxic stress in C. elegans

    Get PDF
    Stress exposure early in life is associated with behavioural and bodily changes that can develop several neuropsychiatric illnesses such as dementia. Experiences during the critical perinatal period form permanent, imprinted memories that can persistently alter expression levels of key genes through epigenetic marking, which can underpin changes in behaviour, molecular and stress responsivity throughout later life, including the next generations. Besides, this implies that gene by environment interactions (such as through epigenetic modifications) may be involved in the onset of these phenotypes. Although there are a number of studies in this field, there are still research gaps. For this reason, understanding the molecular mechanisms underlying the enduring effects of early-life stress is an important research area of the neuroscience. The aim of this project is to determine the behavioural and molecular changes and if there are changes in the epigenetic enzymes that can explain in part this phenomenon. Here using an experimental paradigm, we report that in response to early-life stresses, Caenorhabditis elegans nematodes form an imprinted behavioural and cellular defence memory. We show that exposing newly-born worms to toxic antimycin A exposure or repeated exposure, promotes aversive behaviour through chemotaxis assay and stimulates the expression of the hsp-6 enzyme a toxinspecific cytoprotective. Learned adult defences require memory formation during the L1 larval stage and do not appear to confer increased protection against the toxin. We found that aversive behaviour is inherited only to the F1 generation after 1 exposure to the toxic or can be passed to the F4 generation after 4 exposures to the toxic. At the molecular level, we found changes in the chromatin modifiers MET-2 and SET-25 as well as their target gene SKN-1 until the F3 generation after 1 exposure to the toxic or until the F5 generation after 4 exposures to the toxic stress. Furthermore, we found changes in the lifespan after 1 exposure in the F1 until F3 generations as well as in the F1 until F5 generations after 4 exposures to the toxic stimulus. Regarding the oxidative stress response, we found changes in the same generations after 1 exposure or after 4 exposures to early life toxic stress. Thus, exposure of Caenorhabditis elegans to toxic stresses in the critical period elicits adaptive behavioural and cytoprotective responses as we all as promote changes in the health outcomes, demonstrating a wide range of alterations that can appear after an early-life harmful stimulus. Likewise, we can conclude that these results are orchestrated by SET-25 pathway through SKN-1 transcription factor, which forms imprinted aversive behaviour and imprints a cytoprotective memory in the adulthood and the successive generations. These results, open a new avenue for new epigenetic therapies for neuropsychiatric disorders through chromati

    A Combined Chronic Low-Dose Soluble Epoxide Hydrolase and Acetylcholinesterase Pharmacological Inhibition Promotes Memory Reinstatement in Alzheimer's Disease Mice Models

    Full text link
    Alzheimer's disease (AD) is a progressive neurological disorder with multifactorial and heterogeneous causes. AD involves several etiopathogenic mechanisms such as aberrant protein accumulation, neurotransmitter deficits, synaptic dysfunction and neuroinflammation, which lead to cognitive decline. Unfortunately, the currently available anti-AD drugs only alleviate the symptoms temporarily and provide a limited therapeutic effect. Thus, new therapeutic strategies, including multitarget approaches, are urgently needed. It has been demonstrated that a co-treatment of acetylcholinesterase (AChE) inhibitor with other neuroprotective agents has beneficial effects on cognition. Here, we have assessed the neuroprotective effects of chronic dual treatment with a soluble epoxide hydrolase (sEH) inhibitor (TPPU) and an AChE inhibitor (6-chlorotacrine or rivastigmine) in in vivo studies. Interestingly, we have found beneficial effects after chronic low-dose co-treatment with TPPU and 6-chlorotacrine in the senescence-accelerated mouse prone 8 (SAMP8) mouse model as well as with TPPU and rivastigmine co-treatment in the 5XFAD mouse model, in comparison with the corresponding monotherapy treatments. In the SAMP8 model, no substantial improvements in synaptic plasticity markers were found, but the co-treatment of TPPU and 6-chlorotacrine led to a significantly reduced gene expression of neuroinflammatory markers, such as interleukin 6 (Il-6), triggering receptor expressed on myeloid cell 2 (Trem2) and glial fibrillary acidic protein (Gfap). In 5XFAD mice, chronic low-dose co-treatment of TPPU and rivastigmine led to enhanced protein levels of synaptic plasticity markers, such as the phospho-cAMP response element-binding protein (p- CREB) ratio, brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), and also to a reduction in neuroinflammatory gene expression. Collectively, these results support the neuroprotectant role of chronic low-dose co-treatment strategy with sEH and AChE inhibitors in AD mouse models, opening new avenues for effective AD treatment

    Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer's disease mouse model

    Get PDF
    The implication of epigenetic mechanisms in Alzheimer's disease (AD) has been demonstrated in several studies. UNC0642, a specific and potent inhibitor of methyltransferase activity G9a/GLP (G9a-like) complex, was evaluated in the 5XFAD mouse model. UNC0642 treatment rescued 5XFAD cognition impairment, reduced DNAmethylation (5-mC), increased hydroxymethylation (5-hmC), and decreased the di-methylation of lysine 9 of histone H3 (H3K9me2) levels in the hippocampus. Increases in the Nuclear Factor erythroid-2-Related Factor 2 (NRF2), Heme oxygenase decycling 1 (Hmox1) gene expression, and diminution in Reactive Oxygen Species (ROS) were also reported. Moreover, neuroinflammatory markers, such as Interleukin 6 (Il-6), Tumor necrosis factor-alpha (Tnf-α) gene expression, and Glial fibrillary acidic protein (GFAP) immunofluorescence were reduced by UNC0642 treatment. An increase in Nerve growth factor (Ngf), Nerve growth factor inducible (Vgf) gene expression, Brain-derived neurotrophic factor (BDNF), and Synaptophysin (SYN) were found after UNC0642 treatment. Importantly, a reduction in β-amyloid plaques was also observed. In conclusion, our work demonstrates that the inhibition of the G9a/GLP complex by UNC0642 delivered significant neuroprotective effects in 5XFAD mice, point out G9a/GLP as a new target for AD

    The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer¿s disease pathology: from antioxidant to epigenetic therapy

    Get PDF
    increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer¿s disease and Parkinson¿s Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.This study was supported by the Ministerio de Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and Fondo Europeo de Desarrollo Regional (MINECO-FEDER) (PID2019-106285RB and PCIN-2015-229, and Generalitat de Catalunya (2017 SGR 106) to M.P. The work was funded by grants from the Hungarian Science Foundation (OTKA K 116525), and from the Semmelweis University (STIA-KFI-2020/132257/AOMBT/2020) to C.S

    A Novel NMDA Receptor Antagonist Protects against Cognitive Decline Presented by Senescent Mice

    Get PDF
    Alzheimer’s disease (AD) is the leading cause of dementia. Non-competitive N-Methyl-D-aspartate (NMDA) receptor antagonist memantine improved cognition and molecular alterations after preclinical treatment. Nevertheless, clinical results are discouraging. In vivo efficacy of the RL-208, a new NMDA receptor blocker described recently, with favourable pharmacokinetic properties was evaluated in Senescence accelerated mice prone 8 (SAMP8), a mice model of late-onset AD (LOAD). Oral administration of RL-208 improved cognitive performance assessed by using the three chamber test (TCT), novel object recognition test (NORT), and object location test (OLT). Consistent with behavioural results, RL-208 treated-mice groups significantly changed NMDAR2B phosphorylation state levels but not NMDAR2A. Calpain-1 and Caspase-3 activity was reduced, whereas B-cell lymphoma-2 (BCL-2) levels increased, indicating reduced apoptosis in RL-208 treated SAMP8. Superoxide Dismutase 1 (SOD1) and Glutathione Peroxidase 1 (GPX1), as well as a reduction of hydrogen peroxide (H2O2), was also determined in RL-208 mice. RL-208 treatment induced an increase in mature brain-derived neurotrophic factor (mBDNF), prevented Tropomyosin-related kinase B full-length (TrkB-FL) cleavage, increased protein levels of Synaptophysin (SYN) and Postsynaptic density protein 95 (PSD95). In whole, these results point out to an improvement in synaptic plasticity. Remarkably, RL-208 also decreased the protein levels of Cyclin-Dependent Kinase 5 (CDK5), as well as p25/p35 ratio, indicating a reduction in kinase activity of CDK5/p25 complex. Consequently, lower levels of hyperphosphorylated Tau (p-Tau) were found. In sum, these results demonstrate the neuroprotectant role of RL-208 through NMDAR blockadeThis research was funded by Ministerio de Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and Fondo Europeo de Desarrollo Regional (MINECO-FEDER) (Projects SAF2017-82771-R, SAF2016-77703, SAF2015-68749 and SAF2017-90913), Xunta de Galicia (ED431C 2018/21) and Generalitat de Catalunya (2017 SGR 106)S

    A Novel NMDA Receptor Antagonist Protects against Cognitive Decline Presented by Senescent Mice

    Get PDF
    Alzheimer's disease (AD) is the leading cause of dementia. Non-competitive N-Methyl-D-aspartate (NMDA) receptor antagonist memantine improved cognition and molecular alterations after preclinical treatment. Nevertheless, clinical results are discouraging. In vivo e cacy of the RL-208, a new NMDA receptor blocker described recently, with favourable pharmacokinetic properties was evaluated in Senescence accelerated mice prone 8 (SAMP8), a mice model of late-onset AD (LOAD). Oral administration of RL-208 improved cognitive performance assessed by using the three chamber test (TCT), novel object recognition test (NORT), and object location test (OLT). Consistent with behavioural results, RL-208 treated-mice groups significantly changed NMDAR2B phosphorylation state levels but not NMDAR2A. Calpain-1 and Caspase-3 activity was reduced, whereas B-cell lymphoma-2 (BCL-2) levels increased, indicating reduced apoptosis in RL-208 treated SAMP8. Superoxide Dismutase 1 (SOD1) and Glutathione Peroxidase 1 (GPX1), as well as a reduction of hydrogen peroxide (H2O2), was also determined in RL-208 mice. RL-208 treatment induced an increase in mature brain-derived neurotrophic factor (mBDNF), prevented Tropomyosin-related kinase B full-length (TrkB-FL) cleavage, increased protein levels of Synaptophysin (SYN) and Postsynaptic density protein 95 (PSD95). In whole, these results point out to an improvement in synaptic plasticity. Remarkably, RL-208 also decreased the protein levels of Cyclin-Dependent Kinase 5 (CDK5), as well as p25/p35 ratio, indicating a reduction in kinase activity of CDK5/p25 complex. Consequently, lower levels of hyperphosphorylated Tau (p-Tau) were found. In sum, these results demonstrate the neuroprotectant role of RL-208 through NMDAR blockade

    Deletion of Gadd45a Expression in Mice Leads to Cognitive and Synaptic Impairment Associated with Alzheimer’s Disease Hallmarks.

    Full text link
    Gadd45 genes have been implicated in survival mechanisms, including apoptosis, autophagy,cell cycle arrest, and DNA repair, which are processes related to aging and life span. Here, weanalyzed if the deletion of Gadd45a activates pathways involved in neurodegenerative disorders suchas Alzheimer’s Disease (AD). This study used wild-type (WT) and Gadd45a knockout (Gadd45a−/−)mice to evaluate AD progression. Behavioral tests showed that Gadd45a−/− mice presented lowerworking and spatial memory, pointing out an apparent cognitive impairment compared with WTanimals, accompanied by an increase in Tau hyperphosphorylation and the levels of kinases involvedin its phosphorylation in the hippocampus. Moreover, Gadd45a−/− animals significantly increased thebrain’s pro-inflammatory cytokines and modified autophagy markers. Notably, neurotrophins andthe dendritic spine length of the neurons were reduced in Gadd45a−/− mice, which could contributeto the cognitive alterations observed in these animals. Overall, these findings demonstrate that thelack of the Gadd45a gene activates several pathways that exacerbate AD pathology, suggesting thatpromoting this protein’s expression or function might be a promising therapeutic strategy to slowdown AD progression.</p
    corecore