97 research outputs found

    Temporal expression of membrane antigens during mouse spermatogenesis

    Full text link

    Acid Glycohydrolases in Rat Spermatocytes, Spermatids and Spermatozoa: Enzyme Activities, Biosynthesis and Immunolocalization

    Get PDF
    Mammalian sperm acrosome contains several glycohydrolases thought to aid in the dispersion and digestion of vestments surrounding the egg. In this study, we have used multiple approaches to examine the origin of acrosome-associated glycohdyrdolases. Mixed spermatogenic cells, prepared from rat testis, were separated by unit gravity sedimentation. The purified germ cells (spermatocytes [SP], round spermatids [RS], and elongated/condensed spermatids [E/CS]) contained several glycohydrolase activities. Metabolic labeling in the cell culture, immunoprecipitation, and autoradiographic approaches revealed that β-D-galactosidase was synthesized in SP and RS in 88/90 kDa forms which undergo processing in a cell-specific manner. Immunohistochemical approaches demonstrated that the enzyme was localized in Golgi membranes/vesicles, and lysosome-like structures in SP and RS, and forming/formed acrosome of E/CS

    PP1 Forms an Active Complex with TLRR (lrrc67), a Putative PP1 Regulatory Subunit, during the Early Stages of Spermiogenesis in Mice

    Get PDF
    Mammalian spermatogenesis is a highly regulated developmental pathway that demands dramatic rearrangement of the cytoskeleton of the male germ cell. We have described previously a leucine rich repeat protein, TLRR (also known as lrrc67), which is associated with the spermatid cytoskeleton in mouse testis and is a binding partner of protein phosphatase-1 (PP1), an extremely well conserved signaling molecule. The activity of PP1 is modulated by numerous specific regulators of which TLRR is a candidate. In this study we measured the phosphatase activity of the TLRR-PP1 complex in the adult and the developing mouse testis, which contains varying populations of developing germ cell types, in order to determine whether TLRR acts as an activator or an inhibitor of PP1 and whether the phosphatase activity of this complex is developmentally regulated during spermatogenesis. Additionally, we assayed the ability of bacterially expressed TLRR to affect the enzymatic activity of PP1. Furthermore, we examined phosphorylation of TLRR, and elements of the spermatid cytoskeleton during the first wave of spermatogenesis in the developing testis. We demonstrate here that the TLRR complex is associated with a phosphatase activity in adult mouse testis. The relative phosphatase activity of this complex appears to reach a peak at about 21 days after birth, when pachytene spermatocytes and round spermatids are abundant in the seminiferous epithelium of the mouse testis. TLRR, in addition to tubulin and kinesin-1B, is phosphorylated during the first wave of spermatogenesis. These findings indicate that the TLRR-PP1 complex is active prior to translocation of TLRR toward the sperm flagella and that TLRR, and constituents of the spermatid cytoskeleton, may be subject to regulation by reversible phosphorylation during spermatogenesis in murine testis

    Tsx Produces a Long Noncoding RNA and Has General Functions in the Germline, Stem Cells, and Brain

    Get PDF
    The Tsx gene resides at the X-inactivation center and is thought to encode a protein expressed in testis, but its function has remained mysterious. Given its proximity to noncoding genes that regulate X-inactivation, here we characterize Tsx and determine its function in mice. We find that Tsx is actually noncoding and the long transcript is expressed robustly in meiotic germ cells, embryonic stem cells, and brain. Targeted deletion of Tsx generates viable offspring and X-inactivation is only mildly affected in embryonic stem cells. However, mutant embryonic stem cells are severely growth-retarded, differentiate poorly, and show elevated cell death. Furthermore, male mice have smaller testes resulting from pachytene-specific apoptosis and a maternal-specific effect results in slightly smaller litters. Intriguingly, male mice lacking Tsx are less fearful and have measurably enhanced hippocampal short-term memory. Combined, our study indicates that Tsx performs general functions in multiple cell types and links the noncoding locus to stem and germ cell development, learning, and behavior in mammals

    Vaccinia-Related Kinase 1 Is Required for the Maintenance of Undifferentiated Spermatogonia in Mouse Male Germ Cells

    Get PDF
    Vaccinia-related kinase 1 (VRK1) is a crucial protein kinase for mitotic regulation. VRK1 is known to play a role in germ cell development, and its deficiency results in sterility. Here we describe that VRK1 is essential for the maintenance of spermatogonial stem cells. To determine whether VRK1 plays a role in these cells, we assessed the population size of undifferentiated spermatogonia. Flow cytometry analyses showed that the number of undifferentiated spermatogonia was markedly reduced in VRK1-deficient testes. VRK1 was highly expressed in spermatogonial populations, and approximately 66% of undifferentiated spermatogonia that were sorted as an Ep-CAM+/c-kit−/alpha-6-integrin+ population showed a positive signal for VRK1. Undifferentiated stem cells expressing Plzf and Oct4 but not c-kit also expressed VRK1, suggesting that VRK1 is an intrinsic factor for the maintenance of spermatogonial stem cells. Microarray analyses of the global testicular transcriptome and quantitative RT-PCR of VRK1-deficient testes revealed significantly reduced expression levels of undifferentiated spermatogonial marker genes in early postnatal mice. Together, these results suggest that VRK1 is required for the proliferation and differentiation of undifferentiated spermatogonia, which are essential for spermatogenic cell maintenance

    Deletion of the Pluripotency-Associated Tex19.1 Gene Causes Activation of Endogenous Retroviruses and Defective Spermatogenesis in Mice

    Get PDF
    As genetic information is transmitted through successive generations, it passes between pluripotent cells in the early embryo and germ cells in the developing foetus and adult animal. Tex19.1 encodes a protein of unknown function, whose expression is restricted to germ cells and pluripotent cells. During male spermatogenesis, Tex19.1 expression is highest in mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells, Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential function in germ cells or pluripotent stem cells, or what that function might be. To analyse the potential role of Tex19.1 in pluripotency or germ cell function we have generated Tex19.1−/− knockout mice and analysed the Tex19.1−/− mutant phenotype. Adult Tex19.1−/− knockout males exhibit impaired spermatogenesis. Immunostaining and histological analysis revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during meiosis in the Tex19.1−/− testes. Increased transposition of endogenous retroviruses in the germline of Tex19.1−/− mutant mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination and chromosome synapsis during meiosis and cause defects in spermatogenesis. Our results suggest that Tex19.1 is part of a specialised mechanism that operates in the germline to repress transposable genetic elements and maintain genomic stability through successive generations

    DNMT3L Is a Regulator of X Chromosome Compaction and Post-Meiotic Gene Transcription

    Get PDF
    Previous studies on the epigenetic regulator DNA methyltransferase 3-Like (DNMT3L), have demonstrated it is an essential regulator of paternal imprinting and early male meiosis. Dnmt3L is also a paternal effect gene, i.e., wild type offspring of heterozygous mutant sires display abnormal phenotypes suggesting the inheritance of aberrant epigenetic marks on the paternal chromosomes. In order to reveal the mechanisms underlying these paternal effects, we have assessed X chromosome meiotic compaction, XY chromosome aneuploidy rates and global transcription in meiotic and haploid germ cells from male mice heterozygous for Dnmt3L. XY bodies from Dnmt3L heterozygous males were significantly longer than those from wild types, and were associated with a three-fold increase in XY bearing sperm. Loss of a Dnmt3L allele resulted in deregulated expression of a large number of both X-linked and autosomal genes within meiotic cells, but more prominently in haploid germ cells. Data demonstrate that similar to embryonic stem cells, DNMT3L is involved in an auto-regulatory loop in germ cells wherein the loss of a Dnmt3L allele resulted in increased transcription from the remaining wild type allele. In contrast, however, within round spermatids, this auto-regulatory loop incorporated the alternative non-coding alternative transcripts. Consistent with the mRNA data, we have localized DNMT3L within spermatids and sperm and shown that the loss of a Dnmt3L allele results in a decreased DNMT3L content within sperm. These data demonstrate previously unrecognised roles for DNMT3L in late meiosis and in the transcriptional regulation of meiotic and post-meiotic germ cells. These data provide a potential mechanism for some cases of human Klinefelter's and Turner's syndromes

    Temporally Regulated Traffic of HuR and Its Associated ARE-Containing mRNAs from the Chromatoid Body to Polysomes during Mouse Spermatogenesis

    Get PDF
    International audienceBACKGROUND: In mammals, a temporal disconnection between mRNA transcription and protein synthesis occurs during late steps of germ cell differentiation, in contrast to most somatic tissues where transcription and translation are closely linked. Indeed, during late stages of spermatogenesis, protein synthesis relies on the appropriate storage of translationally inactive mRNAs in transcriptionally silent spermatids. The factors and cellular compartments regulating mRNA storage and the timing of their translation are still poorly understood. The chromatoid body (CB), that shares components with the P. bodies found in somatic cells, has recently been proposed to be a site of mRNA processing. Here, we describe a new component of the CB, the RNA binding protein HuR, known in somatic cells to control the stability/translation of AU-rich containing mRNAs (ARE-mRNAs). METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of cell imagery and sucrose gradient fractionation, we show that HuR localization is highly dynamic during spermatid differentiation. First, in early round spermatids, HuR colocalizes with the Mouse Vasa Homolog, MVH, a marker of the CB. As spermatids differentiate, HuR exits the CB and concomitantly associates with polysomes. Using computational analyses, we identified two testis ARE-containing mRNAs, Brd2 and GCNF that are bound by HuR and MVH. We show that these target ARE-mRNAs follow HuR trafficking, accumulating successively in the CB, where they are translationally silent, and in polysomes during spermatid differentiation. CONCLUSIONS/SIGNIFICANCE: Our results reveal a temporal regulation of HuR trafficking together with its target mRNAs from the CB to polysomes as spermatids differentiate. They strongly suggest that through the transport of ARE-mRNAs from the CB to polysomes, HuR controls the appropriate timing of ARE-mRNA translation. HuR might represent a major post-transcriptional regulator, by promoting mRNA storage and then translation, during male germ cell differentiation
    corecore