36 research outputs found
The SPARC Toroidal Field Model Coil Program
The SPARC Toroidal Field Model Coil (TFMC) Program was a three-year effort
between 2018 and 2021 that developed novel Rare Earth Yttrium Barium Copper
Oxide (REBCO) superconductor technologies and then successfully utilized these
technologies to design, build, and test a first-in-class, high-field (~20 T),
representative-scale (~3 m) superconducting toroidal field coil. With the
principal objective of demonstrating mature, large-scale, REBCO magnets, the
project was executed jointly by the MIT Plasma Science and Fusion Center (PSFC)
and Commonwealth Fusion Systems (CFS). The TFMC achieved its programmatic goal
of experimentally demonstrating a large-scale high-field REBCO magnet,
achieving 20.1 T peak field-on-conductor with 40.5 kA of terminal current, 815
kN/m of Lorentz loading on the REBCO stacks, and almost 1 GPa of mechanical
stress accommodated by the structural case. Fifteen internal demountable
pancake-to-pancake joints operated in the 0.5 to 2.0 nOhm range at 20 K and in
magnetic fields up to 12 T. The DC and AC electromagnetic performance of the
magnet, predicted by new advances in high-fidelity computational models, was
confirmed in two test campaigns while the massively parallel, single-pass,
pressure-vessel style coolant scheme capable of large heat removal was
validated. The REBCO current lead and feeder system was experimentally
qualified up to 50 kA, and the crycooler based cryogenic system provided 600 W
of cooling power at 20 K with mass flow rates up to 70 g/s at a maximum design
pressure of 20 bar-a for the test campaigns. Finally, the feasibility of using
passive, self-protection against a quench in a fusion-scale NI TF coil was
experimentally assessed with an intentional open-circuit quench at 31.5 kA
terminal current.Comment: 17 pages 9 figures, overview paper and the first of a six-part series
of papers covering the TFMC Progra
Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas
Diabetes is a major health issue of increasing prevalence. Ăź-cell replacement, by pancreas or islet transplantation, is the only long-term curative option for patients with insulin-dependent diabetes. Despite good functional results, pancreas transplantation remains a major surgery with potentially severe complications. Islet transplantation is a minimally invasive alternative that can widen the indications in view of its lower morbidity. However, the islet isolation procedure disrupts their vasculature and connection to the surrounding extracellular matrix, exposing them to ischemia and anoikis. Implanted islets are also the target of innate and adaptive immune attacks, thus preventing robust engraftment and prolonged full function. Generation of organoids, defined as functional 3D structures assembled with cell types from different sources, is a strategy increasingly used in regenerative medicine for tissue replacement or repair, in a variety of inflammatory or degenerative disorders. Applied to Ăź-cell replacement, it offers the possibility to control the size and composition of islet-like structures (pseudo-islets), and to include cells with anti-inflammatory or immunomodulatory properties. In this review, we will present approaches to generate islet cell organoids and discuss how these strategies can be applied to the generation of a bioartificial pancreas for the treatment of type 1 diabetes
A long term, non-tumorigenic rat hepatocyte cell line and its malignant counterpart, as tools to study hepatocarcinogenesis
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the second cause of cancer-related death. Search for genes/proteins whose expression can discriminate between normal and neoplastic liver is fundamental for diagnostic, prognostic and therapeutic purposes. Currently, the most used in vitro hepatocyte models to study molecular alterations underlying transformation include primary hepatocytes and transformed cell lines. However, each of these models presents limitations. Here we describe the isolation and characterization of two rat hepatocyte cell lines as tools to study liver carcinogenesis. Long-term stable cell lines were obtained from a HCC-bearing rat exposed to the Resistant-Hepatocyte protocol (RH cells) and from a rat subjected to the same model in the absence of carcinogenic treatment, thus not developing HCCs (RNT cells). The presence of several markers identified the hepatocytic origin of both cell lines and confirmed their purity. Although morphologically similar to normal primary hepatocytes, RNT cells were able to survive and grow in monolayer culture for months and were not tumorigenic in vivo. On the contrary, RH cells displayed tumor-initiating cell markers, formed numerous colonies in soft agar and spheroids when grown in 3D and were highly tumorigenic and metastatic after injection into syngeneic rats and immunocompromised mice. Moreover, RNT gene expression profile was similar to normal liver, while that of RH resembled HCC. In conclusion, the two cell lines here described represent a useful tool to investigate the molecular changes underlying hepatocyte transformation and to experimentally demonstrate their role in HCC development
Biosynthetic activity differs between islet cell types and in beta cells is modulated by glucose and not by secretion
A correct biosynthetic activity is thought to be essential for the long-term function and survival of islet cells in culture and possibly also after islet transplantation. Compared to the secretory activity, biosynthetic activity has been poorly studied in pancreatic islet cells. Here we aimed to assess biosynthetic activity at the single cell level to investigate if protein synthesis is dependent on secretagogues and increased as a consequence of hormonal secretion. Biosynthetic activity in rat islet cells was studied at the single cell level using O-propargyl-puromycin (OPP) that incorporates into newly translated proteins and chemically ligates to a fluorescent dye by "click" reaction. Heterogeneous biosynthetic activity was observed between the four islet cell types, with delta cells showing the higher relative protein biosynthesis. Beta cells protein biosynthesis was increased in response to glucose while IBMX and PMA, two drugs known to stimulate insulin secretion, had no similar effect on protein biosynthesis. However, after several hours of secretion, protein biosynthesis remained high even when cells were challenged to basal conditions. These results suggest that mechanisms regulating secretion and biosynthesis in islet cells are different, with glucose directly triggering beta cells protein biosynthesis, independently of insulin secretion. Furthermore, this OPP labelling approach is a promising method to identify newly synthesized proteins under various physiological and pathological conditions
Bioengineered Islet Cell Transplantation
Purpose of Review : β cell replacement via whole pancreas or islet transplantation has greatly evolved for the cure of type 1 diabetes. Both these strategies are however still affected by several limitations. Pancreas bioengineering holds the potential to overcome these hurdles aiming to repair and regenerate β cell compartment. In this review, we detail the state-of-the-art and recent progress in the bioengineering field applied to diabetes research. Recent Findings : The primary target of pancreatic bioengineering is to manufacture a construct supporting insulin activity in vivo. Scaffold-base technique, 3D bioprinting, macro-devices, insulin-secreting organoids, and pancreas-on-chip represent the most promising technologies for pancreatic bioengineering. Summary: There are several factors affecting the clinical application of these technologies, and studies reported so far are encouraging but need to be optimized. Nevertheless pancreas bioengineering is evolving very quickly and its combination with stem cell research developments can only accelerate this trend
From islet of Langerhans transplantation to the bioartificial pancreas
Type 1 diabetes is a disease resulting from autoimmune destruction of the insulin-producing beta cells in the pancreas. When type 1 diabetes develops into severe secondary complications, in particular end-stage nephropathy, or life-threatening severe hypoglycemia, the best therapeutic approach is pancreas transplantation, or more recently transplantation of the pancreatic islets of Langerhans. Islet transplantation is a cell therapy procedure, that is minimally invasive and has a low morbidity, but does not display the same rate of functional success as the more invasive pancreas transplantation because of suboptimal engraftment and survival. Another issue is that pancreas or islet transplantation (collectively known as beta cell replacement therapy) is limited by the shortage of organ donors and by the need for lifelong immunosuppression to prevent immune rejection and recurrence of autoimmunity.
A bioartificial pancreas is a construct made of functional, insulin-producing tissue, embedded in an anti-inflammatory, immunomodulatory microenvironment and encapsulated in a perm-selective membrane allowing glucose sensing and insulin release, but isolating from attacks by cells of the immune system. A successful bioartificial pancreas would address the issues of engraftment, survival and rejection. Inclusion of unlimited sources of insulin-producing cells, such as xenogeneic porcine islets or stem cell-derived beta cells would further solve the problem of organ shortage.
This article reviews the current status of clinical islet transplantation, the strategies aiming at developing a bioartificial pancreas, the clinical trials conducted in the field and the perspectives for further progress.</p
Engineering of primary pancreatic islet cell spheroids for three-dimensional culture or transplantation: a methodological comparative study
Three-dimensional (3D) cell culture by engineering spheroids has gained increasing attention in recent years because of the potential advantages of such systems over conventional two-dimensional (2D) tissue culture. Benefits include the ability of 3D to provide a more physiologically relevant environment, for the generation of uniform, size-controlled spheroids with organ-like microarchitecture and morphology. In recent years, different techniques have been described for the generation of cellular spheroids. Here, we have compared the efficiency of four different methods of islet cell aggregation. Rat pancreatic islets were dissociated into single cells before reaggregation. Spheroids were generated either by (i) self-aggregation in nonadherent petri dishes, (ii) in 3D hanging drop culture, (iii) in agarose microwell plates or (iv) using the Sphericalplate 5D™. Generated spheroids consisted of 250 cells, except for the self-aggregation method, where the number of cells per spheroid cannot be controlled. Cell function and morphology were assessed by glucose stimulated insulin secretion (GSIS) test and histology, respectively. The quantity of material, labor intensity, and time necessary for spheroid production were compared between the different techniques. Results were also compared with native islets. Native islets and self-aggregated spheroids showed an important heterogeneity in terms of size and shape and were larger than spheroids generated with the other methods. Spheroids generated in hanging drops, in the Sphericalplate 5D™, and in agarose microwell plates were homogeneous, with well-defined round shape and a mean diameter of 90 µm. GSIS results showed improved insulin secretion in response to glucose in comparison with native islets and self-aggregated spheroids. Spheroids can be generated using different techniques and each of them present advantages and inconveniences. For islet cell aggregation, we recommend, based on our results, to use the hanging drop technique, the agarose microwell plates, or the Sphericalplate 5D™ depending on the experiments, the latter being the only option available for large-scale spheroids production