255 research outputs found
Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy
How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures
Abdominal ultrasonography in HIV/AIDS patients in southwestern Nigeria
<p>Abstract</p> <p>Background</p> <p>Though the major target of the HIV-virus is the immune system, the frequency of abdominal disorders in HIV/AIDS patients has been reported to be second only to pulmonary disease. These abdominal manifestations may be on the increase as the use of antiretroviral therapy has increased life expectancy and improved quality of life. Ultrasonography is an easy to perform, non invasive, inexpensive and safe imaging technique that is invaluable in Africa where AIDS is most prevalent and where sophisticated diagnostic tools are not readily available. Purpose: To describe the findings and evaluate the clinical utility of abdominal ultrasonography in HIV/AIDS patients in Ibadan, Nigeria</p> <p>Methods</p> <p>A Prospective evaluation of the abdominal ultrasonography of 391 HIV-positive patients as well as 391 age and sex-matched HIV-negative patients were carried out at the University College Hospital, Ibadan.</p> <p>Results</p> <p>Of the 391 cases studied, 260 (66.5%) were females; the mean age was 38.02 years, (range 15–66 years). The disease was most prevalent in the 4th decade with an incidence of 40.4%. Compared with the HIV-negative individuals, the HIV+ group of patients had a significantly higher proportion of splenomegaly (13.5% vs. 7.7%; p < 0.01), lymphadenopathy (2.0% vs. 1.3%; p < 0.70), and renal abnormalities (8.4% vs. 3.8%; p < 0.02). There were no differences in hepatic and pancreatic abnormalities between the HIV+ and HIV- groups. There were significantly fewer gallstones in the HIV+ group (1.4% vs. 5.1%; p < 0.01).</p> <p>Conclusion</p> <p>AIDS is a multi-systemic disease and its demographic and clinical pattern remains the same globally. Ultrasonography is optimally suited for its clinical management especially in Africa. Its accuracy and sensitivity may be much improved with clinico-pathologic correlation which may not be readily available in developing countries; further studies may provide this much needed diagnostic algorithms.</p
Loss of Myotubularin Function Results in T-Tubule Disorganization in Zebrafish and Human Myotubular Myopathy
Myotubularin is a lipid phosphatase implicated in endosomal trafficking in vitro, but with an unknown function in vivo. Mutations in myotubularin cause myotubular myopathy, a devastating congenital myopathy with unclear pathogenesis and no current therapies. Myotubular myopathy was the first described of a growing list of conditions caused by mutations in proteins implicated in membrane trafficking. To advance the understanding of myotubularin function and disease pathogenesis, we have created a zebrafish model of myotubular myopathy using morpholino antisense technology. Zebrafish with reduced levels of myotubularin have significantly impaired motor function and obvious histopathologic changes in their muscle. These changes include abnormally shaped and positioned nuclei and myofiber hypotrophy. These findings are consistent with those observed in the human disease. We demonstrate for the first time that myotubularin functions to regulate PI3P levels in a vertebrate in vivo, and that homologous myotubularin-related proteins can functionally compensate for the loss of myotubularin. Finally, we identify abnormalities in the tubulo-reticular network in muscle from myotubularin zebrafish morphants and correlate these changes with abnormalities in T-tubule organization in biopsies from patients with myotubular myopathy. In all, we have generated a new model of myotubular myopathy and employed this model to uncover a novel function for myotubularin and a new pathomechanism for the human disease that may explain the weakness associated with the condition (defective excitation–contraction coupling). In addition, our findings of tubuloreticular abnormalities and defective excitation-contraction coupling mechanistically link myotubular myopathy with several other inherited muscle diseases, most notably those due to ryanodine receptor mutations. Based on our findings, we speculate that congenital myopathies, usually considered entities with similar clinical features but very disparate pathomechanisms, may at their root be disorders of calcium homeostasis
Recommended from our members
Restricting Microbial Exposure in Early Life Negates the Immune Benefits Associated with Gut Colonization in Environments of High Microbial Diversity
Background: Acquisition of the intestinal microbiota in early life corresponds with the development of the mucosal immune system. Recent work on caesarean-delivered infants revealed that early microbial composition is influenced by birthing method and environment. Furthermore, we have confirmed that early-life environment strongly influences both the adult gut microbiota and development of the gut immune system. Here, we address the impact of limiting microbial exposure after initial colonization on the development of adult gut immunity.
Methodology/Principal Findings: Piglets were born in indoor or outdoor rearing units, allowing natural colonization in the
immediate period after birth, prior to transfer to high-health status isolators. Strikingly, gut closure and morphological
development were strongly affected by isolator-rearing, independent of indoor or outdoor origins of piglets. Isolator-reared
animals showed extensive vacuolation and disorganization of the gut epithelium, inferring that normal gut closure requires
maturation factors present in maternal milk. Although morphological maturation and gut closure were delayed in isolatorreared
animals, these hard-wired events occurred later in development. Type I IFN, IL-22, IL-23 and Th17 pathways were
increased in indoor-isolator compared to outdoor-isolator animals during early life, indicating greater immune activation in
pigs originating from indoor environments reflecting differences in the early microbiota. This difference was less apparent
later in development due to enhanced immune activation and convergence of the microbiota in all isolator-reared animals.
This correlated with elevation of Type I IFN pathways in both groups, although T cell pathways were still more affected in
indoor-reared animals.
Conclusions/Significance: Environmental factors, in particular microbial exposure, influence expression of a large number
of immune-related genes. However, the homeostatic effects of microbial colonization in outdoor environments require
sustained microbial exposure throughout development. Gut development in high-hygiene environments negatively
impacts on normal succession of the gut microbiota and promotes innate immune activation which may impair immune
homeostasis
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
Sustainable conversion of agro-wastes into useful adsorbents
Preparation and characterization of raw andactivated carbon derived from three different selectedagricultural wastes: kola nut pod raw and activated (KNPRand KNPA), bean husk raw and activated (BHR and BHA)and coconut husk raw and activated (CHR and CHA) wereinvestigated, respectively. Influences of carbonization andacid activation on the activated carbon were investigatedusing SEM, FTIR, EDX, pHpzcand Boehm titration tech-niques, respectively. Carbonization was done at 350°C for2 h followed by activation with 0.3 M H3PO4(ortho-phosphoric acid). Results obtained from SEM, FTIR, andEDX revealed that, carbonization followed by acid acti-vation had a significant influence on morphology and ele-mental composition of the samples. SEM showed well-developed pores on the surface of the precursors after acidtreatment, FTIR spectra revealed reduction, broadening,disappearance or appearance of new peaks after acid acti-vation. EDX results showed highest percentage of carbonby atom respectively in the order BHA[KNPA[CHArespectively. The pHpzcwas found to be 5.32, 4.57 and 3.69for KNPA, BHA and CHA, respectively. Boehm titrationresult compliments that of pHpzc, indicating that the sur-faces of the prepared adsorbents are predominantly acidic.This study promotes a sustainable innovative use of agro-wastes in the production of cheap and readily availableactivated carbons, thereby ensuring more affordable waterand effluent treatment adsorbents
Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications
Few-layer graphene was synthesized on a
nickel foam template by chemical vapor deposition. The
resulting three-dimensional (3D) graphene was loaded with
nickel oxide nanostructures using the successive ionic layer
adsorption and reaction technique. The composites were
characterized and investigated as electrode material for
supercapacitors. Raman spectroscopy measurements on the
sample revealed that the 3D graphene consisted of mostly
few layers, while X-ray diffractometry and scanning electron
microscopy revealed the presence of nickel oxide. The
electrochemical properties were investigated using cyclic
voltammetry, electrochemical impedance spectroscopy,
and potentiostatic charge–discharge in aqueous KOH
electrolyte. The novelty of this study is the use of the 3D
porous cell structure of the nickel foam which allows for
the growth of highly conductive graphene and subsequently
provides support for uniform adsorption of the NiO onto
the graphene. The NF-G/NiO electrode material showed
excellent properties as a pseudocapacitive device with a
high-specific capacitance value of 783 F g-1 at a scan rate
of 2 mV s-1. The device also exhibited excellent cycle
stability, with 84 % retention of the initial capacitance after
1000 cycles. The results demonstrate that composites made using 3D graphene are versatile and show considerable
promise as electrode materials for supercapacitor
applications.South African Research Chairs Initiative of the Department of Science and Technology (SARChI-DST) and the National Research Foundation (NRF). University of Pretoria.http://link.springer.com/journal/11665hb201
Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice
<p>Abstract</p> <p>Background</p> <p>Ginsenoside Rg3, a saponin extracted from ginseng, inhibits angiogenesis. The combination of low-dose chemotherapy and anti-angiogenic inhibitors suppresses growth of experimental tumors more effectively than conventional therapy or anti-angiogenic agent alone. The present study was designed to evaluate the efficacy of low-dose gemcitabine combined with ginsenoside Rg3 on angiogenesis and growth of established Lewis lung carcinoma in mice.</p> <p>Methods</p> <p>C57L/6 mice implanted with Lewis lung carcinoma were randomized into the control, ginsenoside Rg3, gemcitabine and combination group. The quality of life and survival of mice were recorded. Tumor volume, inhibitive rate and necrosis rate were estimated. Necrosis of tumor and signals of blood flow as well as dynamic parameters of arterial blood flow in tumors such as peak systolic velocity (PSV) and resistive index (RI) were detected by color Doppler ultrasound. In addition, expression of vascular endothelial cell growth factor (VEGF) and CD31 were observed by immunohistochemstry, and microvessel density (MVD) of the tumor tissues was assessed by CD31 immunohistochemical analysis.</p> <p>Results</p> <p>Quality of life of mice in the ginsenoside Rg3 and combination group were better than in the control and gemcitabine group. Combined therapy with ginsenoside Rg3 and gemcitabine not only enhanced efficacy on suppression of tumor growth and prolongation of the survival, but also increased necrosis rate of tumor significantly. In addition, the combination treatment could obviously decrease VEGF expression and MVD as well as signals of blood flow and PSV in tumors.</p> <p>Conclusion</p> <p>Ginsenoside Rg3 combined with gemcitabine may significantly inhibit angiogenesis and growth of lung cancer and improve survival and quality of life of tumor-bearing mice. The combination of chemotherapy and anti-angiogenic drugs may be an innovative and promising therapeutic strategy in the experimental treatment of human lung cancer.</p
Regulation of Intestinal Immune Response by Selective Removal of the Anterior, Posterior, or Entire Pituitary Gland in Trichinella spiralis Infected Golden Hamsters
The influence of anterior pituitary hormones on the gastrointestinal tract of humans and animals has been previously reported. Hypophysectomy (HYPOX) in the rat causes atrophy of the intestinal mucosa, and reduction of gastric secretion and intestinal absorption, as well as increased susceptibility to bacterial and viral infections. However, to our knowledge, no findings have been published concerning the immune response following HYPOX during worm infection, particularly that which is caused by the nematode Trichinella spiralis. The aim of this work was to analyze the effects of total or partial HYPOX on colonization of T. spiralis in the intestinal lumen, together with duodenal and splenic cytokine expression. Our results indicate that 5 days post infection, only neurointermediate pituitary lobectomy (NIL) reduces the number of intestinally recovered T. spiralis larvae. Using semiquantitative inmunofluorescent laser confocal microscopy, we observed that the mean intensity of all tested Th1 cytokines was markedly diminished, even in the duodenum of infected controls. In contrast, a high level of expression of these cytokines was noted in the NIL infected hamsters. Likewise, a significant decrease in the fluorescence intensity of Th2 cytokines (with the exception of IL-4) was apparent in the duodenum of control and sham infected hamsters, compared to animals with NIL surgeries, which showed an increase in the expression of IL-5 and IL-13. Histology of duodenal mucosa from NIL hamsters showed an exacerbated inflammatory infiltrate located along the lamina propria, which was related to the presence of the parasite. We conclude that hormones from each pituitary lobe affect the gastrointestinal immune responses to T. spiralis through various mechanisms
- …