3,576 research outputs found

    Improved asteroseismic inversions for red-giant surface rotation rates

    Full text link
    Asteroseismic observations of internal stellar rotation have indicated a substantial lack of angular momentum transport in theoretical models of subgiant and red-giant stars. Accurate core and surface rotation rate measurements are therefore needed to constrain internal transport processes included in the models. We eliminate substantial systematic errors of asteroseismic surface rotation rates found in previous studies. We propose a new objective function for the Optimally Localized Averages method of rotational inversions for red-giant stars, which results in more accurate envelope rotation rate estimates obtained from the same data. We use synthetic observations from stellar models across a range of evolutionary stages and masses to demonstrate the improvement. We find that our new inversion technique allows us to obtain estimates of the surface rotation rate that are independent of the core rotation. For a star at the base of the red-giant branch, we reduce the systematic error from about 20% to a value close to 0, assuming constant envelope rotation. We also show the equivalence between this method and the method of linearised rotational splittings. Our new rotational inversion method substantially reduces the systematic errors of red-giant surface rotation rates. In combination with independent measures of the surface rotation rate, this will allow better constraints to be set on the internal rotation profile. This will be a very important probe to further constrain the internal angular momentum transport along the lower part of the red-giant branch.Comment: 17 pages, 22 figures, accepted for publication in Astronomy and Astrophysic

    Asteroseismic sensitivity to internal rotation along the red-giant branch

    Full text link
    Transport of angular momentum in stellar interiors is currently not well understood. Asteroseismology can provide us with estimates of internal rotation of stars and thereby advances our understanding of angular momentum transport. We can measure core-rotation rates in red-giant stars and we can place upper bounds on surface-rotation rates using measurements of dipole (l=1l=1) modes. Here, we aim to determine the theoretical sensitivity of modes of different spherical degree towards the surface rotation. Additionally, we aim to identify modes that can potentially add sensitivity at intermediate radii. We used asteroseismic rotational inversions to probe the internal stellar rotation profiles in red-giant models from the base of the red-giant branch up to the luminosity bump. We used the inversion method of multiplicative optimally localised averages (MOLA) to assess how well internal and surface rotation rates can be recovered from different mode sets and different synthetic rotation profiles. We confirm that dipole mixed modes are sufficient to set constraints on the average core-rotation rates in red giants. However, surface-rotation rates estimated with only dipole mixed modes are contaminated by the core rotation. We show that the sensitivity to the surface rotation decreases from the base of the red-giant branch until it reaches a minimum at 0.6-0.8LbumpL_\text{bump} due to a glitch in the buoyancy frequency. Thereafter a narrow range of increased surface sensitivity just below the bump luminosity exists. Quadrupole and octopole modes have more sensitivity in the outer parts of the star. If observed, quadrupole and octopole modes enable us to distinguish between differential and solid body rotation in the convection zone. To obtain accurate estimates of rotation rates at intermediate radii, acoustic oscillation modes with a spherical degree of l10l\approx10 are needed.Comment: accepted for publication in Astronomy and Astrophysics, revised manuscript after language editin

    Inverse analysis of asteroseismic data: a review

    Full text link
    Asteroseismology has emerged as the best way to characterize the global and internal properties of nearby stars. Often, this characterization is achieved by fitting stellar evolution models to asteroseismic observations. The star under investigation is then assumed to have the properties of the best-fitting model, such as its age. However, the models do not fit the observations perfectly. This is due to incorrect or missing physics in stellar evolution calculations, resulting in predicted stellar structures that are discrepant with reality. Through an inverse analysis of the asteroseismic data, it is possible to go further than fitting stellar models, and instead infer details about the actual internal structure of the star at some locations in its interior. Comparing theoretical and observed stellar structures then enables the determination of the locations where the stellar models have discrepant structure, and illuminates a path for improvements to our understanding of stellar evolution. In this invited review, we describe the methods of asteroseismic inversions, and outline the progress that is being made towards measuring the interiors of stars.Comment: 12 pages, 1 figure. Invited review, Dynamics of the Sun and Star

    Residual cognitive deficits 50 years after lead poisoning during childhood

    Get PDF
    The long term neurobehavioural consequences of childhood lead poisoning are not known. In this study adult subjects with a documented history of lead poisoning before age 4 and matched controls were examined with an abbreviated battery of neuropsychological tests including measures of attention, reasoning, memory, motor speed, and current mood. The subjects exposed to lead were inferior to controls on almost all of the cognitive tasks. This pattern of widespread deficits resembles that found in children evaluated at the time of acute exposure to lead rather than the more circumscribed pattern typically seen in adults exposed to lead. Despite having completed as many years of schooling as controls, the subjects exposed to lead were lower in lifetime occupational status. Within the exposed group, performance on the neuropsychological battery and occupational status were related, consistent with the presumed impact of limitations in neuropsychological functioning on everyday life. The results suggest that many subjects exposed to lead suffered acute encephalopathy in childhood which resolved into a chronic subclinical encephalopathy with associated cognitive dysfunction still evident in adulthood. These findings lend support to efforts to limit exposure to lead in childhood

    Artificial Intelligence Tool for Assessment of Indeterminate Pulmonary Nodules Detected with CT

    Get PDF
    Background: Limited data are available regarding whether computer-aided diagnosis (CAD) improves assessment of malignancy risk in indeterminate pulmonary nodules (IPNs). Purpose: To evaluate the effect of an artificial intelligence-based CAD tool on clinician IPN diagnostic performance and agreement for both malignancy risk categories and management recommendations. Materials and Methods: This was a retrospective multireader multicase study performed in June and July 2020 on chest CT studies of IPNs. Readers used only CT imaging data and provided an estimate of malignancy risk and a management recommendation for each case without and with CAD. The effect of CAD on average reader diagnostic performance was assessed using the Obuchowski-Rockette and Dorfman-Berbaum-Metz method to calculate estimates of area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Multirater Fleiss κ statistics were used to measure interobserver agreement for malignancy risk and management recommendations. Results: A total of 300 chest CT scans of IPNs with maximal diameters of 5-30 mm (50.0% malignant) were reviewed by 12 readers (six radiologists, six pulmonologists) (patient median age, 65 years; IQR, 59-71 years; 164 [55%] men). Readers\u27 average AUC improved from 0.82 to 0.89 with CAD (P \u3c .001). At malignancy risk thresholds of 5% and 65%, use of CAD improved average sensitivity from 94.1% to 97.9% (P = .01) and from 52.6% to 63.1% (P \u3c .001), respectively. Average reader specificity improved from 37.4% to 42.3% (P = .03) and from 87.3% to 89.9% (P = .05), respectively. Reader interobserver agreement improved with CAD for both the less than 5% (Fleiss κ, 0.50 vs 0.71; P \u3c .001) and more than 65% (Fleiss κ, 0.54 vs 0.71; P \u3c .001) malignancy risk categories. Overall reader interobserver agreement for management recommendation categories (no action, CT surveillance, diagnostic procedure) also improved with CAD (Fleiss κ, 0.44 vs 0.52; P = .001). Conclusion: Use of computer-aided diagnosis improved estimation of indeterminate pulmonary nodule malignancy risk on chest CT scans and improved interobserver agreement for both risk stratification and management recommendations

    Desynchronizing effect of high-frequency stimulation in a generic cortical network model

    Full text link
    Transcranial Electrical Stimulation (TCES) and Deep Brain Stimulation (DBS) are two different applications of electrical current to the brain used in different areas of medicine. Both have a similar frequency dependence of their efficiency, with the most pronounced effects around 100Hz. We apply superthreshold electrical stimulation, specifically depolarizing DC current, interrupted at different frequencies, to a simple model of a population of cortical neurons which uses phenomenological descriptions of neurons by Izhikevich and synaptic connections on a similar level of sophistication. With this model, we are able to reproduce the optimal desynchronization around 100Hz, as well as to predict the full frequency dependence of the efficiency of desynchronization, and thereby to give a possible explanation for the action mechanism of TCES.Comment: 9 pages, figs included. Accepted for publication in Cognitive Neurodynamic

    Biodiversity of the Collembola Fauna of Wetland Kerkini (N. Greece), with description of the sexual dimorphism of Entomobrya atrocincta Schött 1896 (Collembola: Entomobryomorpha)

    Get PDF
    A report on the results of a research into some aspects of the collembolan fauna of the Greek Nature Reserve associated with Lake Kerkini, known as Wetland Kerkini, is presented. The nature reserve is large and includes a wide variety of habitats, many of which were not included in this preliminary survey. From the areas sampled we recorded 44 species, of which 39 were previously described, two (Folsomia potapovi Jordana & Baquero n. sp., Entomobrya naziridisi Jordana & Baquero n. sp.), are new to science, while three are identifi ed to generic level; a further 21 are new records for Greece, and an additional 11 species are new records to the Greek Mainland. Sampling with Berlese- Tullgren funnels and Malaise traps allowed us to capture species typical of soil and species present over vegetation. This summary is based on the records held in the online database of the Fauna Europaea Project

    Measurement of the ttˉproductioncrosssectionint\bar{t} production cross section in p\bar{p}collisionsat collisions at \sqrt{s}$ = 1.8 TeV

    Full text link
    We update the measurement of the top production cross section using the CDF detector at the Fermilab Tevatron. This measurement uses ttˉt\bar{t} decays to the final states e+νe+\nu+jets and μ+ν\mu+\nu+jets. We search for bb quarks from tt decays via secondary-vertex identification or the identification of semileptonic decays of the bb and cascade cc quarks. The background to the ttˉt\bar{t} production is determined primarily through a Monte Carlo simulation. However, we calibrate the simulation and evaluate its uncertainty using several independent data samples. For a top mass of 175 GeV/c2GeV/c^2, we measure σttˉ=5.1±1.5\sigma_{t\bar{t}}=5.1 \pm 1.5 pb and σttˉ=9.2±4.3\sigma_{t\bar{t}}=9.2 \pm 4.3 pb using the secondary vertex and the lepton tagging algorithms, respectively. Finally, we combine these results with those from other ttˉt\bar{t} decay channels and obtain σttˉ=6.51.4+1.7\sigma_{t\bar{t}} = 6.5^{+1.7}_{-1.4} pb.Comment: The manuscript consists of 130 pages, 35 figures and 42 tables in RevTex. The manuscript is submitted to Physical Review D. Fixed typo in author lis

    Search for Narrow Diphoton Resonances and for gamma-gamma+W/Z Signatures in p\bar p Collisions at sqrt(s)=1.8 TeV

    Get PDF
    We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 pb^{-1} of p\bar p collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both p\bar p\to\gamma\gamma + X and p\bar p\to\gamma\gamma + W/Z. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale sqrt{F} in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for H\to\gamma\gamma. Finally, we set a lower limit on the mass of a `bosophilic' Higgs boson (e.g. one which couples only to \gamma, W, and Z$ bosons with standard model couplings) of 82 GeV/c^2 at 95% confidence level.Comment: 30 pages, 11 figure

    Measurement of J/Psi and Psi(2S) Polarization in ppbar Collisions at sqrt(s) = 1.8 TeV

    Get PDF
    We have measured the polarization of J/Psi and Psi(2S) mesons produced in p\bar{p} collisions at \sqrt{s} = 1.8 TeV, using data collected at CDF during 1992-95. The polarization of promptly produced J/Psi [Psi(2S)] mesons is isolated from those produced in B-hadron decay, and measured over the kinematic range 4[5.5] < P_T < 20 GeV/c and |y| < 0.6. For P_T \gessim 12 GeV/c we do not observe significant polarization in the prompt component.Comment: Revised version, accepted for publication in Physical Review Letter
    corecore