27 research outputs found

    Role of the Circadian Gas-Responsive Hemeprotein NPAS2 in Physiology and Pathology

    Get PDF
    Simple Summary NPAS2, short for Neuronal PAS Domain Protein 2, is a transcription factor involved in regulating the circadian rhythms and sleep-wake cycles in mammals, including humans. It is a key component of the molecular clockwork that governs daily biological processes. NPAS2 binds heme as a prosthetic group and CO at micromolar concentrations, with ensuing changes in DNA affinity. In this way, gaseous signaling plus heme-based sensing and redox balance modify NPAS2 transcriptional activity and the expression of target genes. NPAS2 plays a crucial role in metabolism regulation and in maintaining the body's internal clock synchronized with the day-night cycle. Dysregulation of NPAS2 can lead to disruptions in circadian rhythms and may contribute to sleep disturbances, psychiatric disorders and other health issues, such as neoplastic, cardiovascular and cerebrovascular diseases. Alternatively, NPAS2 could represent a valuable predictive biomarker for prevention/stratification strategies and a promising druggable target for innovative therapeutic approaches.Abstract Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields

    The Role of NLRP3 Inflammasome Activation and Oxidative Stress in Varicocele-Mediated Male Hypofertility

    No full text
    Varicocele (VC) is the most common abnormality identified in men evaluated for hypofertility. Increased levels of reactive oxygen species (ROS) and reduced antioxidants concentrations are key contributors in varicocele-mediated hypofertility. Moreover, inflammation and alterations in testicular immunity negatively impact male fertility. In particular, NLRP3 inflammasome activation was hypothesized to lead to seminal inflammation, in which the levels of specific cytokines, such as IL-1β and IL-18, are overexpressed. In this review, we described the role played by oxidative stress (OS), inflammation, and NLRP3 inflammasome activation in VC disease. The consequences of ROS overproduction in testis, including inflammation, lipid peroxidation, mitochondrial dysfunction, chromatin damage, and sperm DNA fragmentation, leading to abnormal testicular function and failed spermatogenesis, were highlighted. Finally, we described some therapeutic antioxidant strategies, with recognized beneficial effects in counteracting OS and inflammation in testes, as possible therapeutic drugs against varicocele-mediated hypofertility

    Epigenetic Mechanisms of Inflammasome Regulation

    No full text
    The innate immune system represents the host’s first-line defense against pathogens, dead cells or environmental factors. One of the most important inflammatory pathways is represented by the activation of the NOD-like receptor (NLR) protein family. Some NLRs induce the assembly of large caspase-1-activating complexes called inflammasomes. Different types of inflammasomes have been identified that can respond to distinct bacterial, viral or fungal infections; sterile cell damage or other stressors, such as metabolic imbalances. Epigenetic regulation has been recently suggested to provide a complementary mechanism to control inflammasome activity. This regulation can be exerted through at least three main mechanisms, including CpG DNA methylation, histones post-translational modifications and noncoding RNA expression. The repression or promotion of expression of different inflammasomes (NLRP1, NLRP2, NLRP3, NLRP4, NLRP6, NLRP7, NLRP12 and AIM2) through epigenetic mechanisms determines the development of pathologies with variable severity. For example, our team recently explored the role of microRNAs (miRNAs) targeting and modulating the components of the inflammasome as potential biomarkers in bladder cancer and during therapy. This suggests that the epigenetic control of inflammasome-related genes could represent a potential target for further investigations of molecular mechanisms regulating inflammatory pathways

    Impaired cell proliferation in regenerating liver of 3 β-hydroxysterol Δ14-reductase (TM7SF2) knock-out mice

    No full text
    <p>The liver is the most important organ in cholesterol metabolism, which is instrumental in regulating cell proliferation and differentiation. The gene <i>Tm7sf2</i> codifies for 3 β-hydroxysterol-Δ<sup>14</sup>-reductase (C14-SR), an endoplasmic reticulum resident protein catalyzing the reduction of C14-unsaturated sterols during cholesterol biosynthesis from lanosterol. In this study we analyzed the role of C14-SR <i>in vivo</i> during cell proliferation by evaluating liver regeneration in <i>Tm7sf2</i> knockout (KO) and wild-type (WT) mice. <i>Tm7sf2</i> KO mice showed no alteration in cholesterol content. However, accumulation and delayed catabolism of hepatic triglycerides was observed, resulting in persistent steatosis at all times post hepatectomy. Moreover, delayed cell cycle progression to the G1/S phase was observed in <i>Tm7sf2</i> KO mice, resulting in reduced cell division at the time points examined. This was associated to abnormal ER stress response, leading to alteration in p53 content and, consequently, induction of p21 expression in <i>Tm7sf2</i> KO mice. In conclusion, our results indicate that <i>Tm7sf2</i> deficiency during liver regeneration alters lipid metabolism and generates a stress condition, which, in turn, transiently unbalances hepatocytes cell cycle progression.</p

    The Circadian Protein PER1 Modulates the Cellular Response to Anticancer Treatments

    No full text
    The circadian clock driven by the daily light–dark and temperature cycles of the environment regulates fundamental physiological processes and perturbations of these sophisticated mechanisms may result in pathological conditions, including cancer. While experimental evidence is building up to unravel the link between circadian rhythms and tumorigenesis, it is becoming increasingly apparent that the response to antitumor agents is similarly dependent on the circadian clock, given the dependence of each drug on the circadian regulation of cell cycle, DNA repair and apoptosis. However, the molecular mechanisms that link the circadian machinery to the action of anticancer treatments is still poorly understood, thus limiting the application of circadian rhythms-driven pharmacological therapy, or chronotherapy, in the clinical practice. Herein, we demonstrate the circadian protein period 1 (PER1) and the tumor suppressor p53 negatively cross-regulate each other’s expression and activity to modulate the sensitivity of cancer cells to anticancer treatments. Specifically, PER1 physically interacts with p53 to reduce its stability and impair its transcriptional activity, while p53 represses the transcription of PER1. Functionally, we could show that PER1 reduced the sensitivity of cancer cells to drug-induced apoptosis, both in vitro and in vivo in NOD scid gamma (NSG) mice xenotransplanted with a lung cancer cell line. Therefore, our results emphasize the importance of understanding the relationship between the circadian clock and tumor regulatory proteins as the basis for the future development of cancer chronotherapy
    corecore