20 research outputs found

    Joseph Franz Barwirsch levele Lukács Györgynek

    Get PDF
    _Background:_ Acute kidney injury (AKI) is a frequently encountered complication of imported Plasmodium falciparum infection. Markers of structural kidney damage have been found to detect AKI earlier than serum creatinine-based prediction models but have not yet been evaluated in imported malaria. This pilot study aims to explore the predictive performance of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) for AKI in travellers with imported P. falciparum infection. _Methods:_ Thirty-nine patients with imported falciparum malaria from the Rotterdam Malaria Cohort with available serum and urine samples at presentation were included. Ten of these patients met the criteria for severe malaria. The predictive performance of NGAL and KIM-1 as markers for AKI was compared with that of serum creatinine. _Results:_ Six of the 39 patients (15 %) developed AKI. Serum and urine NGAL and urine KIM-1 were all found to have large areas under the receiver operating characteristics curves (AUROC) for predicting AKI. Urine NGAL was found to have an excellent performance with positive predictive value (PPV) of 1.00 (95 % CI 0.54-1.00), a negative predictive value (NPV) of 1.00 (95 % CI 0.89-1.00) and an AUROC of 1.00 (95 % CI 1.00-1.00). _Conclusion:_ A good diagnostic performance of NGAL and KIM-1 for AKI was found. Particularly, urine NGAL was found to have an excellent predictive performance. Larger studies are needed to demonstrate whether these biomarkers are superior to serum creatinine as predictors for AKI in P. falciparum malaria

    Current status and trends of biological invasions in the Lagoon of Venice, a hotspot of marine NIS introductions in the Mediterranean Sea

    Get PDF
    This paper provides an updated account of the occurrence and abundance of non-indigenous species (NIS) in an area of high risk of introduction: the Lagoon of Venice (Italy). This site is a known hotspot of NIS introductions within the Mediterranean Sea, hosting all the most important vectors of introduction of marine NIS—shipping, recreational boating, shellfish culture and live seafood trade. The recent literature demonstrates that the number of NIS in Venice is continuously changing, because new species are being introduced or identified, and new evidence shows either an exotic origin of species previously believed to be native, or a native origin of formerly believed ‘‘aliens’’, or demonstrates the cryptogenic nature of others. The number of NIS introduced in the Venetian lagoon currently totals 71, out of which 55 are established. This number exceeds those displayed by some nations like Finland, Portugal or Libya. Macroalgae are the taxonomic group with the highest number of introduced species (41 % of NIS): the most likely vector for their introduction is shellfish culture. The source region of NIS introduced to Venice is mainly represented by other Mediterranean or European sites (76 %). The Lagoon of Venice represents a sink but also a source of NIS in the Mediterranean Sea, as it is the site of first record of several NIS, which have since further spread elsewhere.This paper provides an updated account of the occurrence and abundance of non-indigenous species (NIS) in an area of high risk of introduction: the Lagoon of Venice (Italy). This site is a known hotspot of NIS introductions within the Mediterranean Sea, hosting all the most important vectors of introduction of marine NIS-shipping, recreational boating, shellfish culture and live seafood trade. The recent literature demonstrates that the number of NIS in Venice is continuously changing, because new species are being introduced or identified, and new evidence shows either an exotic origin of species previously believed to be native, or a native origin of formerly believed "aliens", or demonstrates the cryptogenic nature of others. The number of NIS introduced in the Venetian lagoon currently totals 71, out of which 55 are established. This number exceeds those displayed by some nations like Finland, Portugal or Libya. Macroalgae are the taxonomic group with the highest number of introduced species (41 % of NIS): the most likely vector for their introduction is shellfish culture. The source region of NIS introduced to Venice is mainly represented by other Mediterranean or European sites (76 %). The Lagoon of Venice represents a sink but also a source of NIS in the Mediterranean Sea, as it is the site of first record of several NIS, which have since further spread elsewhere

    Electrical measurement of the lattice damage induced by alpha-particle implantation in silicon

    No full text
    Recent studies suggest that lattice damage induced by helium or proton ion implantation can be used to control the electrical behavior of bipolar semiconductor devices, such damage directly affecting the mean time (lifetime) of electrons and holes over and above their equilibrium values. However, a lack of knowledge exists regarding the nature of the defects produced by ion implantation, in particular, their stability with time and temperature and effectiveness in controlling recombination processes. In this paper we have reconstructed and characterized the damage profile induced by helium implantation in silicon by making direct measurements of the lifetime profile made on specially fabricated test devices. Results show that the shape of the defect profile differs from that predicted by Monte Carlo simulations. Also, a considerable increase in the resistivity of the layer, not expected with He implantation, has been found. Finally, energy levels affecting the recombination of minority carriers have been given. (c) 2005 Elsevier Ltd. All rights reserved

    THE NEXT LINEAR COLLIDER DAMPING RING COMPLEX ∗

    No full text
    We report progress on the design of the Next Linear Collider (NLC) Damping Rings complex (DRC) [1]. The purpose of the DRC is to provide 120 Hz, low emittance electron and positron bunch trains to the NLC linacs [2]. It consists of two 1.98 GeV main damping rings, one positron pre-damping ring, two pairs of bunch length and energy compressor systems and interconnecting transport lines. The 2 main damping rings store up to 0.8 amp in 3 trains of 95 bunches each and have normalized extracted beam emittances γεx = 3 μm-rad and γεy = 0.03 μm-rad. The preliminary optical design, performance specifications and tolerances are given in [1]. Key subsystems include 1) the 714 MHz RF system [3], 2) the 60 ns risetime injection / extraction pulsed kicker magnets [4], 3) the 44 m wiggler magnet system, 4) the arc and wiggler vacuum system, 5) the radiation management system, 6) the beam diagnostic instrumentation, 7) special systems used for downstream machine protection and 8) feedback-based stabilization systems. Experience at the SLAC Linear Collider has shown that the NLC damping rings will have a pivotal role in the operation of the high power linacs. The ring dynamics and instabilities will in part determine the design choices made for the NLC machine protection system. This paper includes a summary overview of the main ring design and key subsystem components.
    corecore