26 research outputs found

    MapFuse: Complete and Realistic 3D Modelling

    Get PDF
    Validating a 3D indoor radio propagation model that simulates the signal strength of a wireless device can be a challenging task due to an incomplete or a faulty environment model. In this paper, we present a novel method to simulate a complete indoor environment that can be used for evaluating a radio propagation model efficiently. In order to obtain a realistic and robust model of the full environment, the OctoMap framework is applied. The system combines the result of a SLAM algorithm and secondly a simple initial model of the same environment in a probabilistic way. Due to this approach, sensor noise and accumulated registration errors are minimised. Furthermore, in this article, we evaluate the merging approach with two SLAM algorithms, three vision sensors, and four datasets, of which one is publicly available. As a result, we have created a complete volumetric model by merging an initial model of the environment with the result of RGB-D SLAM based on real sensor measurements

    Dense multipath component polarization and wall attenuation at 1.35 GHz in an office environment

    Get PDF
    This paper presents an analysis of dense multipath components in office meeting rooms. Radio channel sounding measurements at 1.35 GHz were performed with transmitter and receiver in the same room (intra-room) and in adjacent rooms (inter-room). Specular and dense multipath components were estimated with the RiMAX maximum-likelihood algorithm. The dense multipath reverberation characteristics were found to be not significantly different between polarization subchannels for both the intra-room and the inter-room channels, supporting the validity of a scalar dense multipath model. The specular and dense multipath wall attenuation losses were found to be 12.0 and 5.4 dB, respectively

    A review of cyber-ranges and test-beds:current and future trends

    Get PDF
    Cyber situational awareness has been proven to be of value in forming a comprehensive understanding of threats and vulnerabilities within organisations, as the degree of exposure is governed by the prevailing levels of cyber-hygiene and established processes. A more accurate assessment of the security provision informs on the most vulnerable environments that necessitate more diligent management. The rapid proliferation in the automation of cyber-attacks is reducing the gap between information and operational technologies and the need to review the current levels of robustness against new sophisticated cyber-attacks, trends, technologies and mitigation countermeasures has become pressing. A deeper characterisation is also the basis with which to predict future vulnerabilities in turn guiding the most appropriate deployment technologies. Thus, refreshing established practices and the scope of the training to support the decision making of users and operators. The foundation of the training provision is the use of Cyber-Ranges (CRs) and Test-Beds (TBs), platforms/tools that help inculcate a deeper understanding of the evolution of an attack and the methodology to deploy the most impactful countermeasures to arrest breaches. In this paper, an evaluation of documented CR and TB platforms is evaluated. CRs and TBs are segmented by type, technology, threat scenarios, applications and the scope of attainable training. To enrich the analysis of documented CR and TB research and cap the study, a taxonomy is developed to provide a broader comprehension of the future of CRs and TBs. The taxonomy elaborates on the CRs/TBs dimensions, as well as, highlighting a diminishing differentiation between application areas

    Cyber Security in the Maritime Industry: A Systematic Survey of Recent Advances and Future Trends

    Get PDF
    The paper presents a classification of cyber attacks within the context of the state of the art in the maritime industry. A systematic categorization of vessel components has been conducted, complemented by an analysis of key services delivered within ports. The vulnerabilities of the Global Navigation Satellite System (GNSS) have been given particular consideration since it is a critical subcategory of many maritime infrastructures and, consequently, a target for cyber attacks. Recent research confirms that the dramatic proliferation of cyber crimes is fueled by increased levels of integration of new enabling technologies, such as IoT and Big Data. The trend to greater systems integration is, however, compelling, yielding significant business value by facilitating the operation of autonomous vessels, greater exploitation of smart ports, a reduction in the level of manpower and a marked improvement in fuel consumption and efficiency of services. Finally, practical challenges and future research trends have been highlighted

    Cyber-security challenges in aviation industry : a review of current and future trends

    Get PDF
    The integration of Information and Communication Technology (ICT) tools into mechanical devices in routine use within the aviation industry has heightened cyber-security concerns. The extent of the inherent vulnerabilities in the software tools that drive these systems escalates as the level of integration increases. Moreover, these concerns are becoming even more acute as the migration within the industry in the deployment of electronic-enabled aircraft and smart airports gathers pace. A review of cyber-security attacks and attack surfaces within the aviation sector over the last 20 years provides a mapping of the trends and insights that are of value in informing on future frameworks to protect the evolution of a key industry. The goal is to identify common threat actors, their motivations, attacks types and map the vulnerabilities within aviation infrastructures most commonly subject to persistent attack campaigns. The analyses will enable an improved understanding of both the current and potential future cyber-security protection provisions for the sector. Evidence is provided that the main threats to the industry arise from Advance Persistent Threat (APT) groups that operate, in collaboration with a particular state actor, to steal intellectual property and intelligence in order to advance their domestic aerospace capabilities as well as monitor, infiltrate and subvert other sovereign nations’ capabilities. A segment of the aviation industry commonly attacked is the Information Technology (IT) infrastructure, the most prominent type of attack being malicious hacking with intent to gain unauthorised access. The analysis of the range of attack surfaces and the existing threat dynamics has been used as a foundation to predict future cyber-attack trends. The insights arising from the review will support the future definition and implementation of proactive measures that protect critical infrastructures against cyber-incidents that damage the confidence of customers in a key service-oriented industry

    Cyber Security Certification Programmes

    Get PDF
    Although a large and fast-growing workforce for qualified cybersecurity professionals exists, developing a cybersecurity certification framework has to overcome many challenges. Towards this end, an extended review of the cybersecurity certifications offered currently on the market from 9 major issuing companies is conducted. Moreover, the guidelines for the definition of a cybersecurity certification framework as they are provided from the recent Cyber Security Act and framework of ENISA, NIST and ISO/IEC 17024 are covered. A vast comparison among the presented cybersecurity certifications is given, based not only on the cybersecurity domain covered but also the required level of candidate's experience. A proposed certification program has been also analyzed based on the learning pathways and the knowledge areas described in FORESIGHT

    3DVFH+ : real-time three-dimensional obstacle avoidance using an octomap

    No full text
    Abstract. Recently, researchers have tried to solve the computational intensive three-dimensional obstacle avoidance by creating a 2D map from a 3D map or by creating a 2D map with multiple altitude levels. When a robot can move in a three-dimensional space, these techniques are no longer sufficient. This paper proposes a new algorithm for real-time three-dimensional obstacle avoidance. This algorithm is based on the 2D VFH+ obstacle avoidance algorithm and uses the octomap frame-work to represent the three-dimensional environment. The algorithm will generate a 2D Polar Histogram from this octomap which will be used to generate a robot motion. The results show that the robot is able to avoid 3D obstacles in real-time. The algorithm is able to calculate a new robot motion with an average time of 300 µs

    Realistic Indoor Radio Propagation for Sub-GHz Communication

    No full text
    This research article proposes a novel ray-launching propagation loss model that is able to use an environment model that contains the real geometry. This environment model is made by applying a Simultaneous Localization and Mapping (SLAM) algorithm. As a solution to the rising demands of Internet of Things applications for indoor environments, this deterministic radio propagation loss model is able to simulate an accurate coverage map that can be used for localization applications or network optimizations. Since this propagation loss model uses a 2D environment model that was captured by a moving robot, an automated validation model is developed so that a wireless sensor network can be used for validating the propagation loss model. We validated the propagation loss model by evaluated two environment models towards the lowest Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Mean Error (ME). Furthermore, the correlation between the number of rays and the RMSE is analyzed and the correlation between the number of reflections versus the RMSE is also analyzed. Finally, the performance of the radio propagation loss model is analyzed
    corecore