
Research Article
MapFuse: Complete and Realistic 3D Modelling

Michiel Aernouts , Ben Bellekens , andMaartenWeyn

IMEC, IDLab, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2000 Antwerp, Belgium

Correspondence should be addressed to Michiel Aernouts; michiel.aernouts@uantwerpen.be

Received 18 August 2017; Accepted 20 December 2017; Published 19 February 2018

Academic Editor: L. Fortuna

Copyright © 2018 Michiel Aernouts et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Validating a 3D indoor radio propagation model that simulates the signal strength of a wireless device can be a challenging task
due to an incomplete or a faulty environment model. In this paper, we present a novel method to simulate a complete indoor
environment that can be used for evaluating a radio propagation model efficiently. In order to obtain a realistic and robust model
of the full environment, the OctoMap framework is applied. The system combines the result of a SLAM algorithm and secondly a
simple initialmodel of the same environment in a probabilistic way.Due to this approach, sensor noise and accumulated registration
errors are minimised. Furthermore, in this article, we evaluate the merging approach with two SLAM algorithms, three vision
sensors, and four datasets, of which one is publicly available. As a result, we have created a complete volumetric model by merging
an initial model of the environment with the result of RGB-D SLAM based on real sensor measurements.

1. Introduction

Due to the recently increased demands on location-based
services, localisation of wireless devices based on received
signal strength has become a significant research topic [1].
Within this research, simulation based approaches are used to
evaluate localisation algorithms. These approaches use wave
propagation models, which can predict the attenuation of
a signal as it propagates through space. Moreover, such a
propagationmodelwill improve the localisation accuracy and
precision [2].

Many different types of propagation models have been
defined [3]. Previous research focussed on the validation of
an indoor ray launching propagation model for sub-GHz
frequencies [4–7]. In [4], Bellekens et al. utilised a sub-1 GHz
measurement device that was programmed with the LPWAN
(Low Power Wide Area Network) standard DASH7 [8]. A
Pioneer 3DX robot was used to collect RF measurements
from 6 stationary transmitters, laser range measurements,
and the wheel odometry. Next, a laser based online SLAM
algorithm (Gmapping) is being used to obtain a 2D map of
the environment as well as the robots’ estimated trajectory.
By combining map and trajectory information with the RF
measurements, the researchers were able to validate their

2D propagation simulation with an accuracy of 2.8 dB and a
precision of 7.8 dB [4].

Evaluating a 3D propagation model based on a real
environment model makes it possible to evaluate signal
strengths at different heights as well as the specific multipath
introduced by the environments. This will enable the eval-
uation of localisation algorithms that are highly influenced
by multipath effects, that is, Angle of Arrival localisation.
Therefore, a UAV (Unmanned Aerial Vehicle) can be utilised
instead of a driving robot to receive first theRFmeasurements
and secondly to capture the environment in 3D. Due to noisy
depth image measurements and accumulated registration
errors, the result of a 3D-SLAM does not cover the entire
environment where ceilings, floor, walls, and objects are
included.

In this paper, we aim to create a complete model of an
environment of which we have foreknowledge. In order to
benefit the completeness of our result, we used a probabilistic,
volumetric mapping approach called OctoMap [9]. In con-
trast to using point clouds, OctoMap allows us to render a
model which contains information about occupied spaces,
free spaces, and unknown spaces. Also, we benefit from the
probabilistic nature of an OctoMap, as it allows us to update

Hindawi
Journal of Robotics
Volume 2018, Article ID 4942034, 13 pages
https://doi.org/10.1155/2018/4942034

http://orcid.org/0000-0002-0527-3871
http://orcid.org/0000-0003-2698-8128
http://orcid.org/0000-0003-1152-6617
https://doi.org/10.1155/2018/4942034

2 Journal of Robotics

Image
tracking

Depth Map
estimation New KF?

Yes

No

Add new KF
to map

Refine
current KF

Current KF Map
optimization Point cloud

Figure 1: This figure illustrates a simplistic schematic of the LSD SLAM algorithm.

an initial guess model of the environment with real sensor
measurements.

Current research about completing an environment
model based on the surface of a captured point cloud has
rather been limited [11, 12]. Breckon and Fisher presented a
method to complete partially observed objects by deriving
plausible data from known portions of the object. However,
this method is time-consuming and involves complex cal-
culations. Furthermore, the completions are not an accurate
reconstruction of reality, as they are only meant to be visually
acceptable for the viewer [11]. In [12], laser range data is
used to create a 2D floor plan, which can be extruded to
a 2.5D model. By aligning this simplified model with a
complex octree of the environment, the researchers were
able to build a final model which includes previously hidden
surfaces. However, automatic generation of a 2.5D model is
challenging when a flawed dataset is used as input. Also, this
approach assumes floors and ceilings to be horizontal and to
have fixed heights. Moreover, model merging is not done in a
probabilistic fashion.

The main contributions of MapFuse regarding the state
of the art are two different approaches for merging an
initial environment model with real measurements. First, the
initial model can be merged iteratively with the final SLAM
result. With this technique, the accuracy can be regulated by
changing the amount and sequence of bothmodels. Secondly,
an online merging process, which updates the initial model
while SLAM is processing, can be applied. Both methods
use OctoMap to probabilistically build a complete volumetric
model.

In order to create and evaluate MapFuse, we have com-
pared three different camera types in a simulated environ-
ment: a basicmonocular camera, awide field-of-view camera,
and a depth-sense camera.With these cameras, datasets were
recorded to be used as input for a visual SLAMalgorithm such
as Large-Scale Direct SLAM (LSD SLAM) or feature-based
RGB-D SLAM. Afterwards, the simulated SLAM results were
validated in four real environments.

The remainder of the paper is structured as follows:
Section 2 lists techniques that were tested and implemented
in our system. Section 3 describes the three main blocks
of which our method consists. In Section 4, results of our
approach are discussed. Finally, Section 5 concludes these
results.

2. Related Work

For many years, researchers have come up with solutions
to the SLAM problem. This problem occurs when a robot

is placed in an unknown environment. Without a map or
information about its own location, the robot has to be able
to build a map of the environment while determining its
own position at the same time [13]. When a SLAM algorithm
is implemented, a robots’ location can be determined in
a probabilistic fashion by combining sensor measurements
with odometry information. Bayes filters such as Kalman
filters are well suited for this purpose, as they predict the
robots’ state based on its previous state and received motion
commands [14]. Afterwards, the predicted state is corrected
with the obtained sensor measurements [15].

Laser range sensors are commonly used for building 2D
and 3D maps [4, 16, 17]. However, cameras have become
increasingly more popular for building 3D maps. This is
due to their low cost compared to laser range sensors and
the possibility of obtaining 3D data when using depth-
sense cameras or stereo cameras [18]. Also, compared to
laser range sensors, depth-sense cameras allow us to record
an entire depth image that contains a collection of points
that are registered with an RGB image. For this reason, we
will research visual SLAM (VSLAM) algorithms to map an
indoor environment. VSLAM can be subdivided into two
subclasses: Feature-Based Methods and Direct Methods. For
our research, we evaluated the two merging processes with
both of these VSLAM methods by comparing LSD SLAM to
RGB-D SLAM.

With OctoMap, volumetric models can be created by
calculating the occupancy probability of all nodes in the
map. As information about occupied spaces, free spaces, and
unknown spaces is obtained, this mapping approach can be
used for autonomous exploration of various environments.

2.1. Large-Scale Direct SLAM. LSD SLAM is a direct VSLAM
algorithm that can be implemented with monocular cameras
as well as stereo cameras [19, 20]. Direct VSLAM methods
profit from pixel intensity values of the entire image. Due
to the fact that the complete image is used as input data,
these methods result in a high accuracy and provide a lot of
information about the geometry of the environment [19, 21].

Figure 1 illustrates the LSD SLAM workflow in a basic
schematic. Firstly, the tracking component estimates the rigid
body pose with 𝑠𝑒(3) [22]. Secondly, the current KF will be
refined or a new KF will be created from the most recent
tracked image, depending on the estimated transformation
between two images. Finally, the map optimisation compo-
nent inserts keyframes into the global map when they are
replaced by a new reference frame.

2.2. RGB-D SLAM. Contrary to LSD SLAM, RGB-D SLAM
is a feature-based VSLAM algorithm. Feature-based VSLAM

Journal of Robotics 3

Kinect

RGB images

Depth images

Frontend

Feature
matching

Transformation
estimation

Backend

Pose graph
optimization

Point
cloud

Figure 2: This figure illustrates a simplistic schematic of the RGB-D SLAM algorithm.

collects feature observations from the camera image and
then compares these features to the previous camera image.
Numerous feature detectors can be implemented for this pur-
pose, for example, Oriented FAST and Rotated BRIEF (ORB),
Scale Invariant Feature Transform (SIFT), and Speeded Up
Robust Features (SURF) [23, 24].

In the RGB-D SLAM frontend, feature locations are
visualised in three dimensions by overlaying the RGB image
with its respective depth image. With 𝑠𝑒(3), a transformation
estimation between two subsequent frames can be calculated
[22]. However, this estimation cannot be considered accurate
due to false positives in feature detection and the fact that
RGB images can be inconsistent with depth images. There-
fore, a Random Sample Consensus (RANSAC) algorithm is
applied to abolish this effect [25].

In the SLAM backend, frames are added as a node to
the pose graph. When a frame matches one of the previous
frames, it will be connected to the existing pose graph of the
matching frame. Otherwise, the new frame is connected to
the previous node in the pose graph. After obtaining spatial
relations via the SLAM frontend, RGB-D SLAM implements
the g2o framework for pose graph optimisation [26]. With
pose graph optimisation, a trajectory is estimated using the
robots’ relative posemeasurements, that is, the robots’ current
and previous poses. Figure 2 provides a simplified overview
of the RGB-D SLAM workflow.

2.3. OctoMap. OctoMap is a volumetric mapping framework
based on an octree data structure andprobabilistic occupancy
estimation [9]. When it comes to mapping arbitrary 3D envi-
ronments, OctoMap has numerous advantages over other
mapping approaches. Octrees are highly memory efficient;
they consist of an octant which can be divided into eight
leaf nodes. Subsequently, these leaf nodes can be seen as
new octants, which in their turn can be divided into leaf
nodes again. The desired resolution of the 3D model is
determined by the depth of the octree. For example, large
adjacent volumes can be represented by a single leaf node to
save memory. The octree data structure is shown in Figure 3.

Figure 3 also displays that an octant node 𝑛 can have
different states: free, occupied, or unknown.This state can be
derived from the calculated probability according to

𝑃 (𝑛 | 𝑧
1:𝑡
)

= [1 + 1 − 𝑃 (𝑛 | 𝑧𝑡)𝑃 (𝑛 | 𝑧
𝑡
)
1 − 𝑃 (𝑛 | 𝑧

1:𝑡−1
)

𝑃 (𝑛 | 𝑧
1:𝑡−1
)
𝑃 (𝑛)
1 − 𝑃 (𝑛)]

−1

. (1)

Equation (1) states that the probability of whether a node
is occupied or free is determined by the current sensor
measurement 𝑧

𝑡
, the previous estimate 𝑃(𝑛 | 𝑧

1:𝑡−1
), and a

prior probability𝑃(𝑛), which is assumed to equal 0.5. In order
to rewrite the equation, we will apply the log-odds notation:

𝐿 (𝑛) = log [𝑃 (𝑛)1 − 𝑃 (𝑛)] . (2)

Thus, (1) can be rewritten as

𝐿 (𝑛 | 𝑧
1:𝑡
) = 𝐿 (𝑛 | 𝑧

1:𝑡−1
) + 𝐿 (𝑛 | 𝑧

𝑡
) . (3)

With log-odds, probabilities of 0% to 100% are mapped
to −∞ dB and +∞ dB. A main advantage of this notation is
that small differences at the outer edges of the range have the
strongest influence on the probability. For example, 50.00%
and 50.01% are mapped to 0 dB and 0.0017 dB, while 99.98%
and 99.99% are mapped to 37 dB and 40 dB. As (3) makes use
of additions instead ofmultiplications, the probability of a leaf
node can be updated faster than in (1). Faulty measurements
due to noise or reflections are cancelled out by the update
formula.

Furthermore, the map can be extended at any time when
the robot explores new unknown areas. As the OctoMap
holds information about unmapped space, the robot knows
which areas it has to avoid for safety reasons, or which areas
are yet to be explored.

3. System Approach

In pursuance of building a complete model, we propose a
system that consists of three main steps. Figure 4 displays
a basic schematic that represents the MapFuse workflow.
Firstly, visual information from the camera is recorded into a
dataset, and an initial guess is modelled. Secondly, the dataset
that was gathered in the first step is used as input for a SLAM
algorithm. Finally, OctoMap is used tomerge the SLAMpoint
cloud with the initial guess.

4 Journal of Robotics

Figure 3: A visual representation of the octree data structure [9].The black leaf node represents occupied space, whereas grey nodes indicate
free space. Unknown space is marked by transparent nodes.

Real world Initial
model

Simulation
(Gazebo)

Datasets SLAM Map
optimisation

Final
map

x n

x n

Figure 4: With MapFuse, a dataset that is recorded in a simulated or real environment is used as input for a SLAM algorithm. In the map
optimisation component, the resulting SLAM point cloud is merged with an initial model which was modelled based on exact dimensions of
the environment. The final MapFuse result is a complete volumetric model of the environment.

(a) (b)

Figure 5: An initial guess point cloud will be used so as to complete the unfinished SLAM point cloud.

3.1. Dataset. Since we have foreknowledge of the environ-
ment, an initial guess model can be created. In order to do so,
we resort to OpenSCAD. This 3D modelling software allows
us to build a model that matches the exact dimensions of the
real environment. The most important goal for such a model
is to provide an incomplete SLAMmap with complementary
information about the environment. The amount of detail

that has to be included in the initial guess mostly depends on
the quality of the dataset. With an admissible dataset, SLAM
will provide a lot of details, so that the initial guess can be
limited to a bounding box of the environment.

Figure 5 displays two different initial guess models. In
Figure 5(a), a bounding box of an indoor environment with
doors and windows is shown. For visualisation purposes,

Journal of Robotics 5

Figure 6: With Gazebo, we are able to simulate quadcopter flight
and sensor measurements in order to gather an ideal dataset. This
dataset was used to evaluate which SLAM algorithm was most
suitable for our approach.

ceilings were not included in this model. In Figure 5(b), we
created a simplified model of an industrial train cart.

An additional benefit is that the model can be imported
in a simulator, which induces numerous advantages. Above
all, simulation is time-saving and abates the risk of crashing
the quadcopter. It has allowed us to experiment withmultiple
camera types and algorithms in order to design an optimal
work flow. Therefore, our system was assessed by employing
Gazebo. This software allows us to spawn a quadcopter as
well as our initial guess model. However, our model needs to
be extended with colour and objects, as VSLAM algorithms
require visual features to build a map of the environment. In
Figure 6, an example of the simulated environment is shown.

As our quadcopter employs a ROS-based operating
system, trajectories can be scripted and tested in Gazebo
before real world tests are conducted. By doing so, the
quadcopter will always follow the same trajectory. Hence,
a better comparison between camera types can be made.
Figure 7 shows which cameras we have evaluated in our
experiments.

However, scripting a trajectory requires some form of
ground truth such as GPS. Since we are operating the
quadcopter indoors, we cannot rely on GPS communication.
An accurate indoor ground truth pose estimation system
would have to be implemented in order to use these trajectory
scripts in reality, which is an expensive and time-consuming
process [27].Therefore, our real world implementation of the
system will control the quadcopter via a remote controller.

After setting up the simulator with an environment, a
flying quadcopter, and a camera, datasets can be recorded via
ROS topics. Such a topic can hold camera images, odometry,
or information about the relationship between all coordinate
frames. With the latter, it is possible to deduce the camera
pose relative to the quadcopter. Consecutively, we can deduce
the initial pose of the quadcopter relative to the map. A
VSLAM algorithm combines all this information with visual
odometry of the camera, with the purpose of obtaining a
more accurate trajectory estimate.

Datasets that were recorded in Gazebo were used as
input for several VSLAM algorithms in order to determine
which camera and which algorithm are most suitable for
our method. In order to validate our simulation results, we

implemented the same process to gather datasets in real
environments.

3.2. SLAM. The second step adopts the dataset as input for a
ROS implementation of a visual SLAM algorithm. By playing
back the datasets, camera images will be published to ROS
topics required by the SLAM algorithm. The playback speed
of the dataset can be slowed down, so that the applied SLAM
algorithmhasmore time to detect and process visual features.
We have experimented with LSD SLAM as well as RGB-
D SLAM in order to analyse which of these algorithms is
most suitable for our method. As discussed in Section 4,
parameters for both algorithms were changed empirically
until we found an optimal result.

3.3.MapOptimisation. Thefinal step in our system combines
the initial guess point cloud of Figure 5 and the SLAM
point cloud into a single OctoMap. In order to obtain an
accurate OctoMap, these point clouds have to be aligned
as well as possible. Point cloud alignment is achieved by
empirically transforming the initial guess coordinate frame
to the SLAM coordinate frame. After the transformation is
regulated correctly, both clouds are sent into an OctoMap
server node.This way, the initial guess model will be updated
with real measurements from a camera. Because SLAM
is not able to map all elements in the environment, for
example, ceilings or walls that are blocked by furniture, our
initial guess model will provide the OctoMap server with
information about these missing elements and updates the
occupancy probability accordingly. A basic schematic of our
map optimisation component is shown in Figure 8.

Two options can be considered tomerge point clouds. On
the one hand, the final SLAM result can be merged iteratively
with the initial guess. Occupancy estimations can be altered
by changing the initial OctoMap occupancy probability or
by inserting both point clouds multiple times. When using
this method, a balance between map completeness and
detail has to be mediated. On the other hand, the merging
process can be affected while SLAM is building a point
cloud. After sending the initial guess point cloud to the
OctoMap server a single time, node probabilities will be
updated iteratively as the SLAM algorithm refines its point
cloud based on current and previous measurements. Due to
the fact that multiple measurements are taken into account,
the occupancy probability will be more conclusive. Figure 9
demonstrates the difference between both merging methods.

4. Results

MapFuse was evaluated using four different datasets, three of
which we have recorded ourselves. Dataset 4 is publicly avail-
able via the RGB-D benchmark dataset [27]. Dataset 1 was
recorded with a wide field-of-view camera; all other datasets
were recorded with a Microsoft Kinect. For all datasets, we
have built an initial guess model with OpenSCAD.

(i) Dataset 1: room V329 at the University of Antwerp.
This meeting room contains many empty tables and
closets

6 Journal of Robotics

(a) Logitech C615 (b) Genius WideCam (c) Microsoft Kinect

Figure 7: In both simulation and reality, we conducted tests with a common webcamera (a), a wide field-of-view webcamera (b), and a
Microsoft Kinect (c).

Initial guess
point cloud

SLAM point
cloud

Alignment OctoMap
server Final model

x n

x n

Figure 8: Basic schematic of the optimisation block of our system.

(ii) Dataset 2: room V315 at the University of Antwerp
(6.67m × 7.02m × 3.77m). The adjacent room V317
was also included in this dataset (4.12m × 3.42m ×
3.77m). Both rooms contain desks and closets with a
high amount of clutter

(iii) Dataset 3: an industrial tank car located in a small
hangar at the port of Antwerp (9.2m × 2.45m × 3.75)

(iv) Dataset 4: the “freiburg1 room” dataset provided by
Sturm et al. This dataset is recorded in a small office
environment.

These datasets were used as input for the two VSLAM
algorithms that were discussed in Section 2: LSD SLAM and
RGB-D SLAM.

Finally, the MapFuse optimisation step of Section 3.3 was
evaluated by applying iterative merging and online merging
on the initial model and the SLAM output.

All testswere performedon aDell Inspiron 15 5548 laptop,
which is providedwith an Intel i7 5500U 2.4GHz, 8GBRAM,
and an AMDRadeon R7M265 graphics card. Ubuntu 14.04.5
LTS was used as the operating system.

4.1. LSD SLAM. Our first tests were conducted with LSD
SLAM.We connected a wide field-of-view web camera (120∘)
to a laptop and downsampled the image to a 640 × 480
resolution in order to evaluate the algorithm.With this setup,
we recorded dataset 1 by walking around the room in a
sideways motion. This was necessary to ensure sufficient
camera translation, which is required for LSDSLAM. In order
to optimise the map with loop closures, the same trajectory
was repeated multiple times.

When running LSD SLAM, a few important parameters
have to be reckoned with. First, a pixel noise threshold is set
to handle faulty sensor measurements. Second, the amount
of keyframes to be saved is defined. This amount is based on
the image overlap and the distance between two consecutive
keyframes. A large number of keyframes will result in an
accurate trajectory, but also induces more noise in the map.

Figure 10(b) illustrates the point cloud and trajectory
estimate of LSD SLAM. Empirical comparison with the real
environment of Figure 10(a) leads us to conclude that LSD
SLAMproduces an accurate trajectory estimate.However, the
point cloud holds a high amount of noise. As our approach
requires a dense and detailed SLAM point cloud with little
noise, we will not pursue LSD SLAM in our research any
further.

4.2. RGB-D SLAM. For our tests with RGB-D SLAM, we
mounted a Kinect camera to an Erle-Copter as shown in
Figure 11 [10]. The Kinect was slightly tilted downwards to
capture as many visual features as possible. The camera was
connected to a laptop which ran the camera driver correctly.
Contrary to LSD SLAM, RGB-D SLAM can handle camera
translation as well as camera rotation. We found that the
best trajectory for this algorithm is to rotate the camera 360
degrees at the centre of the room and then apply coastal
navigation. This process should be repeated for every new
room that is entered.

RGB-D SLAM allowed us to configure numerous param-
eters. First, a feature extractor had to be chosen. Our
tests indicated that the SIFTGPU extractor, combined with
FLANN featurematching, induces a satisfying result. Second,
we filtered the depth image by implementing aminimum and
maximum processing depth. As a result, noisy measurements
outside the valid range were diminished. The optimal values
for these parameters depend on the environment that was
recorded. For example, for Figure 12, we have set these
parameters to 0.5 metres and 7 metres, respectively. Lastly,
the computed point cloud was downsampled, as we noticed
that RGB-D SLAM failed to process new visual features when
the CPU is overloaded. Downsampling the point cloud with a
factor 𝑛 significantly decreases CPUusage, whilemaintaining

Journal of Robotics 7

IG
SL

IG
SL

IG
SL

IG
SL

t(Ｍ)

(a) Iterative merging

IG
３，1 ３，2 ３，3 ３，n

t(Ｍ)

３，···

(b) Online merging

Figure 9: In (a), the initial guess (IG) is iteratively merged with the complete SLAM point cloud (SL). A balance between map completeness
and detail is regulated by the amount of IG or SL point clouds we merge. (b) illustrates another option, where a single IG is merged with
partial online SLAM clouds (SL

𝑛
). The online merging process is finished when SLAM has completely processed the dataset. The difference

between both merging methods is discussed in detail in Section 4.3.

(a) The meeting room that was used to record dataset
1

(b) Resulting point cloud

Figure 10: LSD SLAM result.

Figure 11: For our research, wemounted a Kinect camera to an Erle-
Copter [10].

an acceptable point cloud density. Normally, the Kinect
outputs a 640 × 480 array (307200 entries). By downsampling
this array, RGB-D SLAM keeps every 𝑛th entry in the Kinect
array. For example, if 𝑛 equals 4, only 76800 entries (25%) are
kept to be processed by RGB-D SLAM.

After configuring the RGB-D SLAM parameters, we
managed to build the point clouds shown in Figure 12. When
we compare these results with the LSD SLAM result in
Figure 10, it becomes clear that RGB-D SLAM builds point
clouds with higher density and less noise. This is mainly due
to the fact that RGB-D SLAM inserts all visual information
into the point cloud, whereas LSD SLAM creates a point
cloud which merely consists of pixels that were used for
depth map estimation. However, the RGB-D SLAM point
clouds still contain gaps due to registration errors and limited
observations. For example, the ceilings of dataset 2 are not

visible in Figure 12(b) and the industrial train car of dataset 3
is incomplete in Figure 12(e).

Inquiring the accuracy of a trajectory requires the imple-
mentation of a ground truth estimation system. As men-
tioned in Section 3.1, implementing such a system does not
lie within the scope of our research, so we adopt the accuracy
measurements of Endres et al. [25]. In their research, the
authors state that the RGB-D SLAM trajectory estimate has
an average root mean square error (RMSE) of 9.7 cm and 3.95
degrees if SIFTGPU is used as feature extractor.This number
was obtained by testing the SLAM algorithm with datasets
which include ground truth information [27].

We conducted our own tests in order to determine the𝑥𝑦𝑧 precision of the trajectory estimate. RGB-D SLAM was
launched several times, each time with the same parameters.
One reference trajectory estimate and ten test trajectory
estimates were extracted from these tests. For every trajec-
tory, we plotted the error relative to the reference trajectory.
Boxplots for the 𝑥-, 𝑦-, and 𝑧-axis error can be found in
Figures 13, 14, and 15.

In Figure 13(a), we can observe that the test trajectories
correspond well to our reference trajectory, as well as to each
other. Errors relative to the reference remain very limited for
all trajectories. Nonetheless, we also detect outliers with a
difference of up to 80 cm relative to the reference trajectory.
Figure 13(b) illustrates when these outliers occur in time.This
plot shows high precision until a certain point where the
trajectories start to spread out. At this point, RGB-D SLAM
was not able to process visual features. Thus, the trajectory

8 Journal of Robotics

(a) RoomV315 at the University of Antwerp, where we
recorded dataset 2

(b) RGB-D SLAM result for dataset 2

(c) RGB-D SLAM result for dataset 4 (d) Dataset 3 was recorded with the purpose of
modelling an industrial tank car at the port of Antwerp

(e) RGB-D SLAM result for dataset 3

Figure 12: We assessed the RGB-D SLAM algorithm in several environments. First, we tested indoor environments as shown in (a), (b), and
(c). Second, we applied the algorithm to map an industrial train cart ((d) and (e)).

estimate could not be calculated correctly until visual features
were tracked again. Compared to the 𝑦- and 𝑧-axis, the 𝑥-axis
trajectory accumulated more errors due to the fact that the
camera mainly travelled along the 𝑥-axis.

Similarly to the 𝑥-axis trajectory, Figure 14 demonstrates
a high precision on the 𝑦-axis. As this axis contains fewer
translations than the 𝑥-axis, outliers are less distinct.

Finally, the 𝑧-axis boxplot in Figure 15 exhibits precision
results that are comparable with the 𝑥 and 𝑦 precision plots.

In general, we can conclude that the RGB-D SLAM
algorithm results in precise trajectory estimates, as long as
visual features are continuously detected while mapping an
environment. In order to ensure continuous feature tracking,

the dataset can be played out at a lower speed. By doing so,
RGB-D SLAM will have more time to process new images
which is beneficial for feature extraction.

4.3. Optimisation Results. Although RGB-D SLAM has pro-
vided us with an accurate and dense point cloud, Figure 12
has shownus that themapmerely contains information about
all environmental elements that were visible in the dataset
images. For example, ceilings were not recorded, so they will
not be included in the resulting map. When we use this point
cloud to render an OctoMap, only a partial volumetric model
of the environment is obtained, as seen in Figure 16.

Journal of Robotics 9

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Er
ro

r (
m

)

2 3 4 5 6 7 8 91 10

Trajectory

(a) This boxplot demonstrates the 𝑥-axis precision error of all trajectories
relative to a test trajectory

#109

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x-
ax

is
tr

aj
ec

to
ry

 (m
)

1
.4
9
3
9
8
6
7

1
.4
9
3
9
8
6
6
8

1
.4
9
3
9
8
6
7
2

1
.4
9
3
9
8
6
7
4

1
.4
9
3
9
8
6
7
6

1
.4
9
3
9
8
6
6
6

1
.4
9
3
9
8
6
6
4

Time (epoch)

(b) This plot shows the 𝑥-axis precision error over time of all trajectories
relative to a test trajectory

Figure 13: RGB-D SLAM 𝑥-axis precision.

2 3 4 5 6 7 8 91 10

Trajectory

−0.3

−0.2

−0.1

0

0.1

0.2

Er
ro

r (
m

)

Figure 14: RGB-D SLAM 𝑦-axis precision.

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Er
ro

r (
m

)

2 3 4 5 6 7 8 91 10

Trajectory

Figure 15: RGB-D SLAM 𝑧-axis precision.

Our approach resolves this issue by combining the SLAM
point cloud with an initial guess. Merging these clouds can
be achieved in two ways: iterative and online. The first
method builds an OctoMap using the initial guess and
the final SLAM result as input. Occupancy probability is
steered by iteratively inserting the point clouds multiple
times. However, this form of map completion also updates
valid measurements with free space, causing the map to lose
some of its detail. Figure 17 demonstrates this problem. In
Figure 17(a), both point clouds were inserted once.The initial

Figure 16: An OctoMap created from our RGB-D SLAM result of
Figure 12(c).

guess has successfully filled in gaps that were present in the
SLAM result of Figure 16, although it has also caused doors
and windows to disappear. By adding another instance of
the SLAM result (Figure 17(c)), doors and windows started
to reappear along with unwanted gaps in the floor. Another
factor that has to be taken into account is the order in which
point clouds are beingmerged. As can be seen in Figures 17(e)
and 17(g), inverting the merging sequence has a significant
effect on the occupancy probability calculation. Concisely,
balancing the amount of point clouds and uncovering an
appropriate merging sequence are a troublesome task.

A second method to merge point clouds was mentioned
in Section 3.3. With this method, point clouds are already
being merged while SLAM is running. Instead of using a
single SLAM point cloud, RGB-D SLAM constantly pushes
its current online point cloud. The main advantage of this
method is that OctoMap can now render a volumetric model
based on previous and current observations, which leads
to a more conclusive probability calculation. Contrary to
iterative merging, online merging allows us to obtain an
adequate balance between map completeness and detail.
This is demonstrated in Figure 18(a): undesirable gaps were
completed by the initial guess model, without completely
closing up doors and windows.

Both optimisationmethodswere evaluated using our own
datasets as well. First, we take a look in Figure 19(a). An initial

10 Journal of Robotics

(a)

SL
IG

t(Ｍ)

(b)

(c)

SL SL
IG

t(Ｍ)

(d)

(e)

SL SL SL SL SL SL
IG IG IG IG IG IG IG

t(Ｍ)

(f)

(g)

SL SL SL SL SL SL
IG IG IG IG IG IGIG

t(Ｍ)

(h)

Figure 17: Iterative merging of our initial guess model (IG) with the complete SLAM point cloud (SL).

(a)

IG
３，1 ３，2 ３，3 ３，n

t(Ｍ)

３，···

(b)

Figure 18: Online merging.

guess model was created with OpenSCAD and converted to a
point cloud (Figure 5(a)). Also, we recorded a dataset in our
indoor environment (Figure 12(a)) to generate online point
clouds via RGB-D SLAM.Through an OctoMap server, these
online point clouds were constantly merged with our initial
guess until the entire dataset was played.

Secondly, we discuss Figure 19(c). In order to build this
model, RGB-D SLAM was used to create a point cloud of an
industrial environment, as can be seen in Figures 12(d) and
12(e). Before merging the SLAM point cloud with our initial
guess, we removed all unnecessary data, as we only wished
to obtain a model of the train cart. Next, this point cloud

Journal of Robotics 11

(a) Online merging of an initial guess model (Fig-
ure 5(a)) with live RGB-D SLAM output

IG
３，1 ３，2 ３，3 ３，n

t(Ｍ)

３，···

(b)

(c) Iterative merging of Figure 5(b) with Figure 12(e).
The model consists of one initial guess and one SLAM
point cloud

t(Ｍ)

IG
３，

(d)

Figure 19: Optimisation results for our own datasets. For (a), online merging was applied. In (c), we conducted iterative merging of 2 point
clouds.

was aligned and iterativelymergedwith the initial guess point
cloud of Figure 5(b). In this case, the initial guess and the
SLAM result were merged a single time.

5. Conclusion

In this paper, we present an efficient, robust method for
completion and optimisation of 3D models using MapFuse.
In a simulator as well as in reality, we have evaluated
combinations of proven open-source technologies in order
to attain a realistic map optimisation technique. Apart from
these technologies, our method does not require additional
complex calculations for map optimisation.

Several aspects affect the quality of our final result. Firstly,
the accuracy of the initial guess model has to be considered.
For known environments, the accuracy is assumed to be
100%, as exact measurements can be collected. In other
situations, the user has to speculate about dimensions based
on visual observations or the result of a SLAM algorithm.
Also, the amount of detail that is included in the initial guess,
for example, windows, doors, and furniture, will affect the
occupancy probability for those elements within the model.
In general, outlines of the filtered SLAM environment are
sufficient to serve as initial guess, as detail will be provided
by SLAM. Future work could involve automatic generation
of the initial model from the SLAM output.

Secondly, MapFuse requires an accurate RGB-D SLAM
point cloud in order to update the initial guess correctly.
For this purpose, the SLAM algorithm has to be provided
with a valid dataset that contains a significant amount of

visual information about the environment. SLAM accuracy
and completeness are directly related to the amount and
quality of visual observations in the dataset. Improvements
for the SLAMresult can bemade by altering parameters of the
algorithm, or by lowering the playback speed of the dataset.
The lattermeasure allows RGB-D SLAMmore time per frame
to process visual features.

Finally, we have to choose a method for bringing both
point clouds together. Iterative merging fuses complete point
clouds by aligning them and sending them to an OctoMap
server. A balance between map completeness and detail is
set by regulating the amount of point clouds that is being
forwarded, as well as implementing an appropriate merging
sequence. However, obtaining this balance has proven to be a
difficult exercise. A main advantage of the iterative merging
method is that the SLAM point cloud can be edited before
using it in the merging process. Online merging starts by
sending a single initial guess to an OctoMap server and
continues with running the RGB-D SLAM algorithm. After
an initial map alignment, online SLAM point clouds are
continuously merged with the initial guess, leading to an
improved balance between map completeness and detail. For
both merging methods, OctoMap parameters such as initial
probability and resolution can be altered in order to influence
the final result. Also, MapFuse could cope with dynamic
environments by setting an occupancy probability threshold
which cancels out moving objects.

As initially intended, MapFuse is suitable for creating 3D
models of various environments for the purpose of validating
wireless propagation models. Furthermore, the proposed

12 Journal of Robotics

approach can be applied in other application domains such as
the optimisation of dynamic control algorithms. Researchers
would be able to model realistic 3D objects which makes it
possible to validate complex control simulations [28]. Due
to the realistic nature of our approach, such validations
could improve control systems which work with complex
3D objects. Additionally, the accuracy and precision of the
validation will be affected by the OctoMap resolution. Hence,
a performance trade-off for the control system could be
analysed.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

References

[1] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,”
International Journal of Communication Systems, vol. 25, no. 9,
pp. 1101-1102, 2012.

[2] M. F. Iskander and Z. Yun, “Propagation prediction models
for wireless communication systems,” IEEE Transactions on
Microwave Theory and Techniques, vol. 50, no. 3, pp. 662–673,
2002.

[3] C. Phillips, D. Sicker, and D. Grunwald, “A Survey of wireless
path loss prediction and coverage mapping methods,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 1, pp. 255–270,
2013.

[4] B. Bellekens, R. Penne, and M. Weyn, “Validation of an indoor
ray launching RF propagation model,” in Proceedings of the
6th IEEE-APS Topical Conference on Antennas and Propagation
in Wireless Communications, IEEE APWC 2016, pp. 74–77,
Australia, September 2016.

[5] Z. Yun and M. F. Iskander, “Ray tracing for radio propagation
modeling: Principles and applications,” IEEE Access, vol. 3, pp.
1089–1100, 2015.

[6] Z. Lai, G.De LaRoche,N. Bessis et al., “Intelligent ray launching
algorithm for indoor scenarios,”Radioengineering, vol. 20, no. 2,
pp. 398–408, 2011.

[7] J. Chan, C. Zheng, and X. Zhou, “3D printing your wireless cov-
erage,” inProceedings of the 2ndACMInternationalWorkshop on
Hot Topics in Wireless, HotWireless 2015, pp. 1–5, France.

[8] M. Weyn, G. Ergeerts, R. Berkvens, B. Wojciechowski, and Y.
Tabakov, “DASH7 alliance protocol 1.0: Low-power, mid-range
sensor and actuator communication,” in Proceedings of the IEEE
Conference on Standards for Communications and Networking,
CSCN 2015, pp. 54–59, Japan, October 2015.

[9] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees,” Autonomous Robots, vol. 34, no.
3, pp. 189–206, 2013.

[10] E. Robotics, “Erle-Copter — Erle Robotics,” http://erlerobotics
.com/blog/erle-copter/.

[11] T. P. Breckon and R. B. Fisher, “Non-parametric 3D surface
completion,” in Proceedings of the 5th International Conference
on 3-D Digital Imaging and Modeling, 3DIM 2005, pp. 573–580,
Canada, June 2005.

[12] E. Turner and A. Zakhor, “Automatic Indoor 3D Surface Recon-
struction with Segmented Building and Object Elements,” in
proceedings of the 2015 International Conference on 3D Vision,

vol. 10, Institute of Electrical and Electronics Engineers (IEEE),
Lyon, France, 2015.

[13] H. Durrant-Whyte and T. Bailey, “Simultaneous localization
and mapping: part I,” IEEE Robotics & Automation Magazine,
vol. 13, no. 2, pp. 99–110, 2006.

[14] L. Zhang, R. Zapata, and P. Lepinay, “Self-adaptive monte carlo
localization for mobile robots using range sensors,” in Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’9), pp. 1541–1546, St. Louis,Mo,USA,
October 2009.

[15] D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Bordello,
“Bayesian filtering for location estimation,” IEEE Pervasive
Computing, vol. 2, no. 3, pp. 24–33, 2003.

[16] D. M. Cole and P. M. Newman, “Using laser range data for 3D
SLAM in outdoor environments,” in Proceedings of the 2006
IEEE International Conference on Robotics and Automation,
IEEE, Orlando, FL, USA, 2006, http://www.robots.ox.ac.uk/
mobile/Papers/3DScanMacthingCole ICRA2006.pdf.

[17] A. Aghamohammadi, A. H. Tamjidi, and H. D. Taghirad,
“SLAM Using Single Laser Range Finder,” IFAC Proceedings
Volumes, vol. 41, no. 2, pp. 14657–14662, 2008, http://linkinghub
.elsevier.com/retrieve/pii/S1474667016413479.

[18] A. Gil, O. M. Mozos, M. Ballesta, and O. Reinoso, “A compara-
tive evaluation of interest point detectors and local descriptors
for visual SLAM,” Machine Vision and Applications, vol. 21, no.
6, pp. 905–920, 2010.

[19] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale
Direct monocular SLAM,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics): Preface, vol. 8690, no. 2, pp.
834–849, 2014.

[20] J. Engel, J. Stuckler, and D. Cremers, “Large-scale direct SLAM
with stereo cameras,” in proceedings of the 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
vol. 9, IEEE, Hamburg, Germany, 2015.

[21] G. Silveira, E. Malis, and P. Rives, “An Efficient Direct
Approach to Visual SLAM,” in Proceedings of the IEEE
Transactions on Robotics, vol. 24, IEEE, Roma, Italy, 2007,
https://www.researchgate.net/profile/Patrick Rives/publication/
224330808 An efficient direct approach to visual SLAM/links/
00b7d52983db5ed842000000/An-efficient-direct-approach-to-
visual-SLAM.pdf.

[22] S. Umeyama, “Least-Squares Estimation of Transformation
Parameters Between Two Point Patterns,” IEEE Transactions on
Pattern Analysis andMachine Intelligence, vol. 13, no. 4, pp. 376–
380, 1991.

[23] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an
efficient alternative to SIFT or SURF,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV ’11), pp.
2564–2571, Barcelona, Spain, November 2011.

[24] P. M. Panchal, S. R. Panchal, and S. K. Shah, “A comparison
of SIFT and SURF,” International Journal of Innovative Research
in Computer and Communication Engineering, vol. 1, no. 2, pp.
323–327, 2013.

[25] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and
W. Burgard, “An evaluation of the RGB-D SLAM system,” in
Proceedings of the IEEE International Conference onRobotics and
Automation (ICRA ’12), pp. 1691–1696, 2012.

[26] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W.
Burgard, “G2o: a general framework for graph optimization,” in
Proceedings of the IEEE International Conference onRobotics and

http://erlerobotics.com/blog/erle-copter/
http://erlerobotics.com/blog/erle-copter/
http://www.robots.ox.ac.uk/mobile/Papers/3DScanMacthingCole_ICRA2006.pdf
http://www.robots.ox.ac.uk/mobile/Papers/3DScanMacthingCole_ICRA2006.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1474667016413479
http://linkinghub.elsevier.com/retrieve/pii/S1474667016413479
https://www.researchgate.net/profile/Patrick_Rives/publication/224330808_An_efficient_direct_approach_to_visual_SLAM/links/00b7d52983db5ed842000000/An-efficient-direct-approach-to-visual-SLAM.pdf
https://www.researchgate.net/profile/Patrick_Rives/publication/224330808_An_efficient_direct_approach_to_visual_SLAM/links/00b7d52983db5ed842000000/An-efficient-direct-approach-to-visual-SLAM.pdf
https://www.researchgate.net/profile/Patrick_Rives/publication/224330808_An_efficient_direct_approach_to_visual_SLAM/links/00b7d52983db5ed842000000/An-efficient-direct-approach-to-visual-SLAM.pdf
https://www.researchgate.net/profile/Patrick_Rives/publication/224330808_An_efficient_direct_approach_to_visual_SLAM/links/00b7d52983db5ed842000000/An-efficient-direct-approach-to-visual-SLAM.pdf

Journal of Robotics 13

Automation (ICRA ’11), pp. 3607–3613, Shanghai, China, May
2011.

[27] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of RGB-D SLAM systems,” in
Proceedings of the 25th IEEE/RSJ International Conference on
Robotics and Intelligent Systems (IROS ’12), pp. 573–580,October
2012.

[28] L. Fortuna and G. Muscato, “A roll stabilization system for a
monohull ship: modeling, identification, and adaptive control,”
IEEE Transactions on Control Systems Technology, vol. 4, no. 1,
pp. 18–28, 1996.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

