505 research outputs found
ECOSSE: Estimating Carbon in Organic Soils - Sequestration and Emissions: Final Report
Background
Climate change, caused by greenhouse gas ( GHG) emissions, is one of the most serious threats facing our planet, and is of concern at both UK and devolved administration levels. Accurate predictions for the effects of changes in climate and land use on GHG emissions are vital for informing land use policy. Models which are currently used to predict differences in soil carbon (C) and nitrogen (N) caused by these changes, have been derived from those based on mineral soils or deep peat. None of these models is entirely satisfactory for describing what happens to organic soils following land-use change. Reports of Scottish GHG emissions have revealed that approximately 15% of Scotland's total emissions come from land use changes on Scotland's high carbon soils; the figure is much lower for Wales. It is therefore important to reduce the major uncertainty in assessing the carbon store and flux from land use change on organic soils, especially those which are too shallow to be deep peats but still contain a large reserve of C.
In order to predict the response of organic soils to external change we need to develop a model that reflects more accurately the conditions of these soils. The development of a model for organic soils will help to provide more accurate values of net change to soil C and N in response to changes in land use and climate and may be used to inform reporting to UKGHG inventories.
Whilst a few models have been developed to describe deep peat formation and turnover, none have so far been developed suitable for examining the impacts of land-use and climate change on the types of organic soils often subject to land-use change in Scotland and Wales. Organic soils subject to land-use change are often (but not exclusively) characterised by a shallower organic horizon than deep peats (e.g. organo-mineral soils such as peaty podzols and peaty gleys). The main aim of the model developed in this project was to simulate the impacts of land-use and climate change in these types of soils. The model is, a) be driven by commonly available meteorological data and soil descriptions, b) able to simulate and predict C and N turnover in organic soils, c) able to predict the impacts of land-use change and climate change on C and N stores in organic soils in Scotland and Wales.
In addition to developing the model, we have undertaken a number of other modelling exercises, literature searches, desk studies, data base exercises, and experimentation to answer a range of other questions associated with the responses of organic soils in Scotland and Wales to climate and land-use change.
Aims of the ECOSSE project
The aims of the study were:
To develop a new model of C and N dynamics that reflects conditions in organic soils in Scotland and Wales and predicts their likely responses to external factors
To identify the extent of soils that can be considered organic in Scotland and Wales and provide an estimate of the carbon contained within them
To predict the contribution of CO 2, nitrous oxide and methane emissions from organic soils in Scotland and Wales, and provide advice on how changes in land use and climate will affect the C and N balance
In order to fulfil these aims, the project was broken down into modules based on these objectives and the report uses that structure. The first aim is covered by module 2, the second aim by module 1, and the third aim by modules 3 to 8. Many of the modules are inter-linked.
Objectives of the ECOSSE project
The main objectives of the project were to:
Describe the distribution of organic soils in Scotland and Wales and provide an estimate of the C contained in them
Develop a model to simulate C and N cycling in organic soils and provide predictions as to how they will respond to land-use, management and climate change using elements of existing peat, mineral and forest soil models
Provide predictive statements on the effects of land-use and climate change on organic soils and the relationships to GHG emissions, including CO 2, nitrous oxide and methane.
Provide predictions on the effects of land use change and climate change on the release of Dissolved Organic Matter from organic soils
Provide estimates of C loss from scenarios of accelerated erosion of organic soils
Suggest best options for mitigating C and N loss from organic soils
Provide guidelines on the likely effects of changing land-use from grazing or semi-natural vegetation to forestry on C and N in organic soils
Use the land-use change data derived from the Countryside Surveys of Scotland and Wales to provide predictive estimates for changes to C and N balance in organic soils over time
Anomalies in T cell function are associated with individuals at risk of mycobacterium abscessus complex infection
The increasing global incidence and prevalence of non-tuberculous mycobacteria (NTM) infection is of growing concern. New evidence of person-to-person transmission of multidrug-resistant NTM adds to the global concern. The reason why certain individuals are at risk of NTM infections is unknown. Using high definition flow cytometry, we studied the immune profiles of two groups that are at risk of Mycobacterium abscessus complex infection and matched controls. The first group was cystic fibrosis (CF) patients and the second group was elderly individuals. CF individuals with active M. abscessus complex infection or a history of M. abscessus complex infection exhibited a unique surface T cell phenotype with a marked global deficiency in TNFa production during mitogen stimulation. Importantly, immune-based signatures were identified that appeared to predict at baseline the subset of CF individuals who were at risk of M. abscessus complex infection. In contrast, elderly individuals with M. abscessus complex infection exhibited a separate T cell phenotype underlined by the presence of exhaustion markers and dysregulation in type 1 cytokine release during mitogen stimulation. Collectively, these data suggest an association between T cell signatures and individuals at risk of M. abscessus complex infection, however, validation of these immune anomalies as robust biomarkers will require analysis on larger patient cohorts
CD161 expression defines new human Ī³Ī“ T cell subsets
Ī³Ī“ T cells are a highly versatile immune lineage involved in host defense and homeostasis, but questions remain around their heterogeneity, precise function and role during health and disease. We used multiāparametric flow cytometry, dimensionality reduction, unsupervised clustering, and self-organizing maps (SOM) to identify novel Ī³Ī“ T cell naĆÆve/memory subsets chiefly defined by CD161 expression levels, a surface membrane receptor that can be activating or suppressive. We used middle-to-old age individuals given immune blockade is commonly used in this population. Whilst most VĪ“1+subset cells exhibited a terminal differentiation phenotype, VĪ“1ā subset cells showed an early memory phenotype. Dimensionality reduction revealed eight Ī³Ī“ T cell clusters chiefly diverging through CD161 expression with CD4 and CD8 expression limited to specific subpopulations. Comparison of matched healthy elderly individuals to bronchiectasis patients revealed elevated VĪ“1+ terminally differentiated effector memory cells in patients potentially linking this population with chronic proinflammatory disease
Improving Decision-Making Activities for Meningitis and Malaria
Public health professionals are increasingly concerned about the potential impact that climate variability and change can have on infectious disease. The International Research Institute for Climate and Society (IRI) is developing new products to increase the public health community's capacity to understand, use and demand the appropriate climate data and climate information to mitigate the public health impacts of climate on infectious disease, in particular meningitis and malaria. In this paper, we present the new and improved products that have been developed for: (i) estimating dust aerosol for forecasting risks of meningitis and (ii) for monitoring temperature and rainfall and integrating them into a vectorial capacity model for forecasting risks of malaria epidemics. We also present how the products have been integrated into a knowledge system (IRI Data Library Map Room, SERVIR) to support the use of climate and environmental information in climate-sensitive health decision-making
The microaerophilic microbiota of de-novo paediatric inflammatory bowel disease: the BISCUIT study
<p>Introduction: Children presenting for the first time with inflammatory bowel disease (IBD) offer a unique opportunity to study aetiological agents before the confounders of treatment. Microaerophilic bacteria can exploit the ecological niche of the intestinal epithelium; Helicobacter and Campylobacter are previously implicated in IBD pathogenesis. We set out to study these and other microaerophilic bacteria in de-novo paediatric IBD.</p>
<p>Patients and Methods: 100 children undergoing colonoscopy were recruited including 44 treatment naĆÆve de-novo IBD patients and 42 with normal colons. Colonic biopsies were subjected to microaerophilic culture with Gram-negative isolates then identified by sequencing. Biopsies were also PCR screened for the specific microaerophilic bacterial groups: Helicobacteraceae, Campylobacteraceae and Sutterella wadsworthensis.</p>
<p>Results: 129 Gram-negative microaerophilic bacterial isolates were identified from 10 genera. The most frequently cultured was S. wadsworthensis (32 distinct isolates). Unusual Campylobacter were isolated from 8 subjects (including 3 C. concisus, 1 C. curvus, 1 C. lari, 1 C. rectus, 3 C. showae). No Helicobacter were cultured. When comparing IBD vs. normal colon control by PCR the prevalence figures were not significantly different (Helicobacter 11% vs. 12%, p = 1.00; Campylobacter 75% vs. 76%, p = 1.00; S. wadsworthensis 82% vs. 71%, p = 0.312).</p>
<p>Conclusions: This study offers a comprehensive overview of the microaerophilic microbiota of the paediatric colon including at IBD onset. Campylobacter appear to be surprisingly common, are not more strongly associated with IBD and can be isolated from around 8% of paediatric colonic biopsies. S. wadsworthensis appears to be a common commensal. Helicobacter species are relatively rare in the paediatric colon.</p>
Perspectives of primary health care staff on the implementation of a sexual health quality improvement program: A qualitative study in remote aboriginal communities in Australia
Background: Young people living in remote Australian Aboriginal communities experience high rates of sexually transmissible infections (STIs). STRIVE (STIs in Remote communities, ImproVed and Enhanced primary care) was a cluster randomised control trial of a sexual health continuous quality improvement (CQI) program. As part of the trial, qualitative research was conducted to explore staff perceptions of the CQI components, their normalisation and integration into routine practice, and the factors which influenced these processes. Methods: In-depth semi-structured interviews were conducted with 41 clinical staff at 22 remote community clinics during 2011-2013. Normalisation process theory was used to frame the analysis of interview data and to provide insights into enablers and barriers to the integration and normalisation of the CQI program and its six specific components. Results: Of the CQI components, participants reported that the clinical data reports had the highest degree of integration and normalisation. Action plan setting, the Systems Assessment Tool, and the STRIVE coordinator role, were perceived as adding value to the program, but were less readily integrated or normalised. The remaining two components (dedicated funding for health promotion and service incentive payments) were seen as least relevant. Our analysis also highlighted factors which enabled greater integration of the CQI components. These included familiarity with CQI tools, increased accountability of health centre staff and the translation of the CQI program into guideline-driven care. The analysis also identified barriers, including high staff turnover, limited time involved in the program and competing clinical demands and programs. Conclusions: Across all of the CQI components, the clinical data reports had the highest degree of integration and normalisation. The action plans, systems assessment tool and the STRIVE coordinator role all complemented the data reports and allowed these components to be translated directly into clinical activity. To ensure their uptake, CQI programs must acknowledge local clinical guidelines, be compatible with translation into clinical activity and have managerial support. Sexual health CQI needs to align with other CQI activities, engage staff and promote accountability through the provision of clinic specific data and regular face-to-face meetings. Trial registration: Australian and New Zealand Clinical Trials Registry ACTRN12610000358044. Registered 6/05/2010. Prospectively Registered
Early Signs Monitoring to Prevent Relapse in Psychosis and Promote Well-Being, Engagement, and Recovery:Protocol for a Feasibility Cluster Randomized Controlled Trial Harnessing Mobile Phone Technology Blended With Peer Support
BACKGROUND: Relapse in schizophrenia is a major cause of distress and disability and is predicted by changes in symptoms such as anxiety, depression, and suspiciousness (early warning signs [EWSs]). These can be used as the basis for timely interventions to prevent relapse. However, there is considerable uncertainty regarding the implementation of EWS interventions. OBJECTIVE: This study was designed to establish the feasibility of conducting a definitive cluster randomized controlled trial comparing Early signs Monitoring to Prevent relapse in psychosis and prOmote Well-being, Engagement, and Recovery (EMPOWER) against treatment as usual (TAU). Our primary outcomes are establishing parameters of feasibility, acceptability, usability, safety, and outcome signals of a digital health intervention as an adjunct to usual care that is deliverable in the UK National Health Service and Australian community mental health service (CMHS) settings. We will assess the feasibility of candidate primary outcomes, candidate secondary outcomes, and candidate mechanisms for a definitive trial. METHODS: We will randomize CMHSs to EMPOWER or TAU. We aim to recruit up to 120 service user participants from 8 CMHSs and follow them for 12 months. Eligible service users will (1) be aged 16 years and above, (2) be in contact with local CMHSs, (3) have either been admitted to a psychiatric inpatient service or received crisis intervention at least once in the previous 2 years for a relapse, and (4) have an International Classification of Diseases-10 diagnosis of a schizophrenia-related disorder. Service users will also be invited to nominate a carer to participate. We will identify the feasibility of the main trial in terms of recruitment and retention to the study and the acceptability, usability, safety, and outcome signals of the EMPOWER intervention. EMPOWER is a mobile phone app that enables the monitoring of well-being and possible EWSs of relapse on a daily basis. An algorithm calculates changes in well-being based on participants' own baseline to enable tailoring of well-being messaging and clinical triage of possible EWSs. Use of the app is blended with ongoing peer support. RESULTS: Recruitment to the trial began September 2018, and follow-up of participants was completed in July 2019. Data collection is continuing. The database was locked in July 2019, followed by analysis and disclosing of group allocation. CONCLUSIONS: The knowledge gained from the study will inform the design of a definitive trial including finalizing the delivery of our digital health intervention, sample size estimation, methods to ensure successful identification, consent, randomization, and follow-up of participants, and the primary and secondary outcomes. The trial will also inform the final health economic model to be applied in the main trial. TRIAL REGISTRATION: International Standard Randomized Controlled Trial Number (ISRCTN): 99559262; http://isrctn.com/ISRCTN99559262. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/15058
Syngeneic mouse model of human HER2+ metastatic breast cancer for the evaluation of trastuzumab emtansine combined with oncolytic rhabdovirus
BackgroundEstablished mouse models of HER2+ cancer are based on the over-expression of rodent Neu/Erbb2 homologues, which are incompatible with human HER2 (huHER2) targeted therapeutics. Additionally, the use of immune-deficient xenograft or transgenic models precludes assessment of native anti-tumour immune responses. These hurdles have been a challenge for our understanding of the immune mechanisms behind huHER2-targeting immunotherapies.MethodsTo assess the immune impacts of our huHER2-targeted combination strategy, we generated a syngeneic mouse model of huHER2+ breast cancer, using a truncated form of huHER2, HER2T. Following validation of this model, we next treated tumour-bearing with our immunotherapy strategy: oncolytic vesicular stomatitis virus (VSVĪ51) with clinically approved antibody-drug conjugate targeting huHER2, trastuzumab emtansine (T-DM1). We assessed efficacy through tumour control, survival, and immune analyses.ResultsThe generated truncated HER2T construct was non-immunogenic in wildtype BALB/c mice upon expression in murine mammary carcinoma 4T1.2 cells. Treatment of 4T1.2-HER2T tumours with VSVĪ51+T-DM1 yielded robust curative efficacy compared to controls, and broad immunologic memory. Interrogation of anti-tumour immunity revealed tumour infiltration by CD4+ T cells, and activation of B, NK, and dendritic cell responses, as well as tumour-reactive serum IgG.ConclusionsThe 4T1.2-HER2T model was used to evaluate the anti-tumour immune responses following our complex pharmacoviral treatment strategy. These data demonstrate utility of the syngeneic HER2T model for assessment of huHER2-targeted therapies in an immune-competent in vivo setting. We further demonstrated that HER2T can be implemented in multiple other syngeneic tumour models, including but not limited to colorectal and ovarian models. These data also suggest that the HER2T platform may be used to assess a range of surface-HER2T targeting approaches, such as CAR-T, T-cell engagers, antibodies, or even retargeted oncolytic viruses
Characterizing and correcting immune dysfunction in non-tuberculous mycobacterial disease
Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is a chronic, progressive, and growing worldwide health burden associated with mounting morbidity, mortality, and economic costs. Improvements in NTM-PD management are urgently needed, which requires a better understanding of fundamental immunopathology. Here, we examine temporal dynamics of the immune compartment during NTM-PD caused by Mycobacterium avium complex (MAC) and Mycobactereoides abscessus complex (MABS). We show that active MAC infection is characterized by elevated T cell immunoglobulin and mucin-domain containing-3 expression across multiple T cell subsets. In contrast, active MABS infection was characterized by increased expression of cytotoxic T-lymphocyte-associated protein 4. Patients who failed therapy closely mirrored the healthy individual immune phenotype, with circulating immune network appearing to āignoreā infection in the lung. Interestingly, immune biosignatures were identified that could inform disease stage and infecting species with high accuracy. Additionally, programmed cell death protein 1 blockade rescued antigen-specific IFN-Ī³ secretion in all disease stages except persistent infection, suggesting the potential to redeploy checkpoint blockade inhibitors for NTM-PD. Collectively, our results provide new insight into species-specific āimmune chatterā occurring during NTM-PD and provide new targets, processes and pathways for diagnostics, prognostics, and treatments needed for this emerging and difficult to treat disease
- ā¦