1,326 research outputs found

    Trace levels of sewage effluent are sufficient to increase class 1 integron prevalence in freshwater biofilms without changing the core community

    Get PDF
    Most river systems are impacted by sewage effluent. It remains unclear if there is a lower threshold to the concentration of sewage effluent that can significantly change the structure of the microbial community and its mobile genetic elements in a natural river biofilm. We used novel in situ mesocosms to conduct replicated experiments to study how the addition of low-level concentrations of sewage effluent (nominally 2.5 ppm) affects river biofilms in two contrasting Chalk river systems, the Rivers Kennet and Lambourn (high/low sewage impact, respectively). 16S sequencing and qPCR showed that community composition was not significantly changed by the sewage effluent addition, but class 1 integron prevalence (Lambourn control 0.07% (SE ± 0.01), Lambourn sewage effluent 0.11% (SE ± 0.006), Kennet control 0.56% (SE ± 0.01), Kennet sewage effluent 1.28% (SE ± 0.16)) was significantly greater in the communities exposed to sewage effluent than in the control flumes (ANOVA, F = 5.11, p = 0.045) in both rivers. Furthermore, the difference in integron prevalence between the Kennet control (no sewage effluent addition) and Kennet sewage-treated samples was proportionally greater than the difference in prevalence between the Lambourn control and sewage-treated samples (ANOVA (interaction between treatment and river), F = 6.42, p = 0.028). Mechanisms that lead to such differences could include macronutrient/biofilm or phage/bacteria interactions. Our findings highlight the role that low-level exposure to complex polluting mixtures such as sewage effluent can play in the spread of antibiotic resistance genes. The results also highlight that certain conditions, such as macronutrient load, might accelerate spread of antibiotic resistance genes

    Bose-Einstein condensation with magnetic dipole-dipole forces

    Full text link
    Ground-state solutions in a dilute gas interacting via contact and magnetic dipole-dipole forces are investigated. To the best of our knowledge, it is the first example of studies of the Bose-Einstein condensation in a system with realistic long-range interactions. We find that for the magnetic moment of e.g. chromium and a typical value of the scattering length all solutions are stable and only differ in size from condensates without long-range interactions. By lowering the value of the scattering length we find a region of unstable solutions. In the neighborhood of this region the ground state wavefunctions show internal structures not seen before in condensates. Finally, we find an analytic estimate for the characteristic length appearing in these solutions.Comment: final version, 4 pages, 4 figure

    Limits on mode coherence in pulsating DA white dwarfs due to a nonstatic convection zone

    Full text link
    The standard theory of pulsations deals with the frequencies and growth rates of infinitesimal perturbations in a stellar model. Modes that are calculated to be linearly driven should increase their amplitudes exponentially with time; the fact that nearly constant amplitudes are usually observed is evidence that nonlinear mechanisms inhibit the growth of finite-amplitude pulsations. Models predict that the mass of convection zones in pulsating hydrogen-atmosphere (DAV) white dwarfs is very sensitive to temperature (i.e., M_CZ∝T_eff^-90), leading to the possibility that even low-amplitude pulsators may experience significant nonlinear effects. In particular, the outer turning point of finite-amplitude g-mode pulsations can vary with the local surface temperature, producing a reflected wave that is out of phase with what is required for a standing wave. This can lead to a lack of coherence of the mode and a reduction in its global amplitude. In this paper we show that (1) whether a mode is calculated to propagate to the base of the convection zone is an accurate predictor of its width in the Fourier spectrum, (2) the phase shifts produced by reflection from the outer turning point are large enough to produce significant damping, and (3) amplitudes and periods are predicted to increase from the blue edge to the middle of the instability strip, and subsequently decrease as the red edge is approached. This amplitude decrease is in agreement with the observational data while the period decrease has not yet been systematically studied.Published versio

    A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter

    Full text link
    We have demonstrated a high-flux source of polarization-entangled photons using a type-II phase-matched periodically-poled KTP parametric downconverter in a collinearly propagating configuration. We have observed quantum interference between the single-beam downconverted photons with a visibility of 99% and a measured coincidence flux of 300/s/mW of pump. The Clauser-Horne-Shimony-Holt version of Bell's inequality was violated with a value of 2.711 +/- 0.017.Comment: 7 pages submitted to Physical Review

    The mixed problem in L^p for some two-dimensional Lipschitz domains

    Get PDF
    We consider the mixed problem for the Laplace operator in a class of Lipschitz graph domains in two dimensions with Lipschitz constant at most 1. The boundary of the domain is decomposed into two disjoint sets D and N. We suppose the Dirichlet data, f_D has one derivative in L^p(D) of the boundary and the Neumann data is in L^p(N). We find conditions on the domain and the sets D and N so that there is a p_0>1 so that for p in the interval (1,p_0), we may find a unique solution to the mixed problem and the gradient of the solution lies in L^p

    Continuous loading of a magnetic trap

    Get PDF
    We have realized a scheme for continuous loading of a magnetic trap (MT). ^{52}Cr atoms are continuously captured and cooled in a magneto-optical trap (MOT). Optical pumping to a metastable state decouples atoms from the cooling light. Due to their high magnetic moment (6 Bohr magnetons), low-field seeking metastable atoms are trapped in the magnetic quadrupole field provided by the MOT. Limited by inelastic collisions between atoms in the MOT and in the MT, we load 10^8 metastable atoms at a rate of 10^8 atoms/s below 100 microkelvin into the MT. After loading we can perform optical repumping to realize a MT of ground state chromium atoms.Comment: 4 pages, 4 figures, version 2, modified references, included additional detailed information, minor changes in figure 3 and in tex

    Reliability of the beamsplitter based Bell-state measurement

    Full text link
    A linear 50/50 beamsplitter, together with a coincidence measurement, has been widely used in quantum optical experiments, such as teleportation, dense coding, etc., for interferometrically distinguishing, measuring, or projecting onto one of the four two-photon polarization Bell-states ψ()>|\psi^{(-)}>. In this paper, we demonstrate that the coincidence measurement at the output of a beamsplitter cannot be used as an absolute identifier of the input state ψ()>|\psi^{(-)}> nor as an indication that the input photons have projected to the ψ()>|\psi^{(-)}> state.Comment: 4 pages, two-colum

    Entangled-Photon Generation from Parametric Down-Conversion in Media with Inhomogeneous Nonlinearity

    Full text link
    We develop and experimentally verify a theory of Type-II spontaneous parametric down-conversion (SPDC) in media with inhomogeneous distributions of second-order nonlinearity. As a special case, we explore interference effects from SPDC generated in a cascade of two bulk crystals separated by an air gap. The polarization quantum-interference pattern is found to vary strongly with the spacing between the two crystals. This is found to be a cooperative effect due to two mechanisms: the chromatic dispersion of the medium separating the crystals and spatiotemporal effects which arise from the inclusion of transverse wave vectors. These effects provide two concomitant avenues for controlling the quantum state generated in SPDC. We expect these results to be of interest for the development of quantum technologies and the generation of SPDC in periodically varying nonlinear materials.Comment: submitted to Physical Review

    Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 53 (2006): 140-156, doi:10.1016/j.dsr2.2005.09.014.Much recent observational evidence suggests that energy from the barotropic tides may be used for mixing in the deep ocean. Here the process of internal tide generation and dissipation by tidal flow over an isolated Gaussian topography is examined, using 2-dimensional numerical simulations employing the MITgcm. Four different topographies are considered, for five different amplitudes of barotropic forcing, thereby allowing a variety of combinations of key nondimensional parameters. While much recent attention has focused on the role of relative topographic steepness and height in modifying the rate of conversion of energy from barotropic to baroclinic modes, here attention is focused on parameters dependent on the flow amplitude. For narrow topography, large amplitude forcing gives rise to baroclinic responses at higher harmonics of the forcing frequency. Tall narrow topographies are found to be the most conducive to mixing. Dissipation rates in these calculations are most efficient for the narrowest topography.KH was supported by a Summer Student Fellowship at Woods Hole Oceanographic Institution. SL was supported by Office of Naval Research grant N00014-03-1-0336

    Quantum Locality

    Full text link
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is no reason to suspect any conflict between quantum theory and special relativity.Comment: Introduction has been revised, references added, minor corrections elsewhere. To appear in Foundations of Physic
    corecore