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Most river systems are impacted by sewage effluent. It remains unclear if there is a lower threshold to the
concentration of sewage effluent that can significantly change the structure of the microbial community
and its mobile genetic elements in a natural river biofilm. We used novel in situ mesocosms to conduct
replicated experiments to study how the addition of low-level concentrations of sewage effluent
(nominally 2.5 ppm) affects river biofilms in two contrasting Chalk river systems, the Rivers Kennet and
Lambourn (high/low sewage impact, respectively). 16S sequencing and qPCR showed that community
composition was not significantly changed by the sewage effluent addition, but class 1 integron preva-
lence (Lambourn control 0.07% (SE + 0.01), Lambourn sewage effluent 0.11% (SE + 0.006), Kennet control
0.56% (SE + 0.01), Kennet sewage effluent 1.28% (SE + 0.16)) was significantly greater in the communities
exposed to sewage effluent than in the control flumes (ANOVA, F = 5.11, p = 0.045) in both rivers.
Furthermore, the difference in integron prevalence between the Kennet control (no sewage effluent
addition) and Kennet sewage-treated samples was proportionally greater than the difference in preva-
lence between the Lambourn control and sewage-treated samples (ANOVA (interaction between treat-
ment and river), F = 642, p = 0.028). Mechanisms that lead to such differences could include
macronutrient/biofilm or phage/bacteria interactions. Our findings highlight the role that low-level
exposure to complex polluting mixtures such as sewage effluent can play in the spread of antibiotic
resistance genes. The results also highlight that certain conditions, such as macronutrient load, might

accelerate spread of antibiotic resistance genes.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

(Johnson et al., 2009).
STW-effluent poses risks to the environment, to essential

The majority of EU rivers are impacted by Sewage Treatment
Works (STW) effluent and it is not uncommon for effluent to pro-
vide between 20% and 70% of total river flow (Graham et al.,
2010a,b; EC, 2012; Halliday et al., 2015). Growing water abstrac-
tion needs, caused by human pressure, in combination with
declining river flows, owing to climate change effects, are projected
to further increase STW-effluent dominance in many rivers
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ecosystem services performed by rivers and eventually to humans
(Brooks et al., 2006; Waiser et al., 2011). It is difficult to quantify the
amount of sewage effluent that is harmful to a river, because a) the
discharge amount and content of sewage effluent is highly variable
not only per STW but also from day to day, or even hour to hour,
and b) actions of individual compounds either singly or in synergy
with each other, remain poorly understood (Schwarzenbach et al.,
2006; Ricciardi et al., 2009).

STW-effluent and substances therein have a range of different
effects on riverine biofilms, which are at the heart of biogeo-
chemical cycles and food webs. Observed effects include increased
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growth rates due to enhanced nutrient supply (Hill and Fanta,
2008), leading to harmful blooms, lower photosynthetic and
metabolic efficiency (Wakelin et al., 2008; Bonnineau et al., 2010),
potentially reducing biogeochemical cycling rates, decreased bio-
film adhesion (Schreiber and Szewzyk, 2008), decreased bacterial
diversity (Ricciardi et al., 2009), changes to community composi-
tion (Lawrence et al., 2005; Wakelin et al., 2008), decreased colo-
nization rates (Verma et al, 2007) and spread of antibiotic
resistance genes (Amos et al., 2014). This range of responses reflects
the diversity of chemicals and microorganisms emitted by STWs. To
confound the issue, contamination of river microbiota by STW-
effluent components such as metals or antibiotic resistance genes
(ARG), gets passed through the food web to higher organisms
(Brooks et al., 2006). Fish and water fowl, for example, have been
found to harbour ARGs after exposure to microbial reservoirs in the
environment (Ghosh and Mandal, 2010; Bonnedahl and Jarhult,
2014) which poses a potential threat to humans.

There are indications that exposure to STW-effluent contributes
to multi-drug resistance in environmental bacteria (Akiyama and
Savin, 2010; Amos et al., 2014). While there has always been a
background level of genes in the environment that can confer
resistance to antibiotics (Bhullar et al., 2012; Martinez, 2012), it is
now well known that resistance to antibiotics in the environment is
increasing (Alanis, 2005; Da Silva et al., 2006; Knapp et al., 2009).

ARGs are more prevalent where bacteria are exposed to anti-
biotics, metals or detergents (Pei et al., 2006; Graham et al,
2010a,b). In that light, there have been calls to develop sewage
systems that produce effluent cleaned of bacteria, pharmaceuticals,
macronutrients, nanoparticles and other contaminants, but cleaner
systems are costly (Amos et al., 2014; Huang et al., 2015) and do not
always achieve what is required. Huang et al. (2015) have demon-
strated that tetracycline resistance genes were still prevalent in
final cleaned effluent treated with ozone, even after tetracycline
and tetracycline-resistant bacteria had been removed, marking out
STW-effluent as a potent source of ARG regardless of cleaning ef-
forts such as UV disinfection (Baquero et al., 2008; Huang et al.,
2015). A growing number of studies show that proximity to STW-
effluent increases the occurrence of antibiotic resistance also in
riverine microbiota (Edge and Hill, 2005; Servais and Passerat,
2009; Graham et al., 2010a,b; Amos et al., 2015).

The effects of STW-effluent are hard to unravel, because of the
complexity of its compounds and the variability of its composition.
Many studies have therefore focused on the effects of particular
polluting substances, such as antibiotics, antivirals or nanoparticles
(Graham et al., 2010a,b; Kaegi et al., 2011; Slater et al., 2011), not on
the mixture itself. To overcome the lack of information on the ef-
fects of STW-effluent as a whole, we conducted this study, using an
experimental approach to compare biofilms grown in novel in-situ
mesocosms at two sites within the Thames catchment that are
differently impacted by sewage effluent. The mesocosm system
allows for in-situ experiments with replication under controlled
conditions in the river, thereby combining the need for control and
replication with the need to study natural systems in their
complexity. Based on findings of a laboratory-based pilot study
(unpublished), we added nominal concentrations of ~2.5 ppm of
STW-effluent to the experimental flumes. This low concentration
was designed to avoid changing the microbial communities
through addition of nutrients, with an aim to focus on the effects
from the complex mixture of micropollutants within sewage
effluent.

We used a molecular sequencing approach to estimate the
impact of STW-effluent on the biofilm communities, focusing on
the 16S rRNA locus to characterise the community composition. We
also assessed the prevalence of class 1 integrons to investigate if
low level STW-effluent exposure can induce genetic changes to a

microbial community, such as an increase of antibiotic resistance
genes stored on mobile genetic elements. Class 1 integrons, which,
like other mobile genetic elements, carry such genes, can be passed
between bacteria by horizontal gene transfer and confer antibiotic
resistance. Class 1 integrons encode the class 1 integron-integrase
gene (Intl1), which is able to insert up to 6 gene cassettes at an
integron-associated recombination site (Gillings et al., 2009). Class
1 integrons were first known to primarily confer resistance to
antibiotic drugs (Recchia and Hall, 1995; Partridge et al., 2001), but
they also confer resistance to a variety of other antibiotic com-
pounds and biocides (Gillings et al., 2009; Gaze et al., 2011). Class 1
integrons are elevated in sewage sludge and elevated levels have
also been found in sewage effluent (Gaze et al., 2011; Amos et al.,
2015; Paiva et al., 2015). Gillings et al. (2015) have recently pro-
posed to use the class 1 integron-integrase gene as a genetic marker
for anthropogenic pollution.

We hypothesized that adding sewage effluent to a river, even in
as low a concentration as 2.5 ppm, would significantly change the
diversity and structure of riverine biofilms or lead to increased
transfer of mobile genetic elements. We tested our hypothesis with
a factorial design, using two different Chalk streams as experi-
mental platforms and two treatments (sewage effluent and control)
per experiment.

2. Methods
2.1. Sites

The Lambourn (experimental site: 51.446022, —1.382894 Lat/
Long, Decimal Geographic Coordinates) and the Kennet (experi-
mental site: 51.422744, —1.698095 Lat/Long, Decimal Geographic
Coordinates) are aquifer-fed Chalk streams with a high base flow
index. They are calcium and bicarbonate rich and have relatively
constant chemical compositions (Neal et al., 2000, 2004).

The Kennet is impacted by point source and diffuse pollution.
Marlborough STW is located 1.7 km upstream from the experi-
mental site (supplement/Fig. 6), serving a population of ca. 8000
(Census, 2001). Iron dosing (tertiary treatment) reduces phos-
phorus loads between 80 and 90% in the final effluent (Neal et al.,
2010). The site is frequently affected by excessive benthic algae
growth (Bowes et al., 2010). Macrophyte growth is sparse and
consists mainly of Callitriche platycarpa, a plant common in eutro-
phic waters (Thiébaut and Muller, 1999).

The River Lambourn is a tributary of the River Kennet. Five kil-
ometres upstream from the experimental site, East Shefford STW
discharges into the Lambourn. The STW has tertiary treatment fa-
cilities that remove between 80 and 90% of phosphorus from the
sewage effluent and serves a population of ca. 1000 people (Census,
2001; Jarvie et al., 2006). Additional waste water input might be
received from septic tanks which release into groundwater close to
the river (Neal et al., 2004). The experimental site has high
macrophyte biomass, including abundant Ranunculus fluitans, a
keystone species in undisturbed Chalk rivers (Hatton-Ellis and
Grieve, 2003).

Nutrient and boron measurements taken in the first half of 2009
(supplement/Fig. 8) in the build-up to our study showed that the
main differences in the river chemistry were soluble reactive
phosphorus (SRP) and boron levels. Boron is used as a tracer for
anthropogenic contamination, as it is a constituent of detergents
(Barth, 1998). Both SRP and boron are higher in the Kennet
(supplement, Fig. 8), suggesting that the defining difference be-
tween the two sites is the measure of human impact on each site.
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2.2. Experiment methodology

We conducted mesocosm experiments in the Rivers Lambourn
and Kennet using the mescososms described in Bowes et al. (2010).
Briefly, they are constructed as blocks of 3 flumes that float at a
constant height directly in the river, allowing river water to flow
through at a constant water depth of ~6 cm (supplement/Fig. 7).
Each flume measured 5 m x 0.3 m, was gated to standardise flow
rates at the upstream end and had a sump to collect river debris %
of the length from the inlet (Bowes et al., 2010). Treatments were
delivered through a tube to the upstream ends of randomly chosen
flumes, using a peristaltic pump (FH100M, Fisher Scientific,
Loughborough, UK) at a drip rate needed to maintain a concen-
tration of >2.5 ppm at a flow rate of 0.10 m s~, as calculated by
standard volumetric calculations. Treatment concentration within
the flumes was controlled by regulation of the pump drip rate,
making it possible to replicate conditions from one flume to the
other. We therefore considered each flume to be one biological
replicate. During the experiments, we set the flow rate in each
flume to 0.10 m s~ (measured daily by a Valeport 801 flow meter)
by manipulating the gate opening. Sewage was collected from the
Marlborough STW (serves ca 8000 people, phosphorus removal, no
disinfection unit) for the Kennet site, and Boxford STW (serves ca
700 people, secondary treatment and settlement tank, no phos-
phorus unit, no disinfection unit) for the Lambourn site. The
rationale behind that was to a) add sewage effluent to the river, that
the river would receive anyway, b) reduce transport times for the
sewage effluent. The effluent was kept in plastic containers wrap-
ped in aluminium foil in dark metal cupboards, to minimize
changes to the effluent caused by light and temperature effects.

A gap between the riverbed and mesocosms limited the number
of invertebrate colonizers entering the flumes. The Kennet's smaller
channel width allowed for 6 flumes, whereas the Lambourn could
fit 8 flumes. We chose 8 flumes for the second experiment to gain
statistical power. Microbial biofilms were grown on 2 cm x 2 cm
limestone tiles placed behind the sump area of the flumes
(supplement/Fig. 7). For both experiments, we placed six sterile
tiles in each flume at the beginning of the experiment. The tiles
were harvested after 9 days, to avoid losing the biofilms. Biofilms
grown in similar studies (Bowes et al., 2010, 2012) and pilot studies,
had by that timepoint matured enough to be in danger of lifting off
the tiles and float downstream.

2.3. Sample collection and DNA sequencing

The experiments started on 17/06/09 in the Kennet and 02/09/
09 in the Lambourn. On day 9 of each experiment, we collected the
biofilm tiles and some river water in sterile sampling bags and
transported them in a cool box to the laboratory (<5 h), were the
whole tiles were frozen at —80 °C. We performed a CTAB/chloro-
form: isoamyl extraction modified from Doyle (1991) on the pooled
samples, followed by PEG-precipitation after Paithankar and Prasad
(1991). The complete extraction protocol can be found in the
supplementary methods. We used the 454 GS-FLX TITANIUM
platform (Roche 454 Life Sciences, Branford, CT, USA) to produce
tag-encoded 16S amplicons of ~400 bp length. We targeted a
fragment of the 16S ribosomal RNA gene (rRNA), comprising the V6
and V7 regions using the universal primers 967F, 5'-CNACGCGAA-
GAACCTTANC-3/, and 1391R, 5'- GACGGGCGGTGTGTRCA-3’ which
capture both chloroplast and bacterial 16S rRNA (Huber et al., 2009;
Huse et al., 2008). We used that regions because it gave us the best
resolution, given the small fragment size that could be sequenced
(Huse et al, 2008). The sequencing libraries were generated
through a one-step PCR with a total of 30 cycles, a mixture of Hot
Start and Hot Start high fidelity taq polymerases and amplicons

extending from the forward primers. DNA amplification and
pyrosequencing were carried out at Research and Testing Labora-
tory (Lubbock, TX, USA).

2.4. Analysis of integron prevalence

For the analysis of intl1 prevalence in the Kennet, we pooled
controls from two successive experiments in the Kennet (a pilot
study done 02/06/2009 and the described study from 17/06/2009)
to match the number of Lambourn replicates. Amos et al. (2015)
have shown that no significant changes to integron prevalence
levels in the Thames catchment between summer months could be
observed, and we tested our data with ANOVA for time effects and
found none. The integron prevalence analysis was done as per Gaze
et al,, (2011). In short, subsamples of the DNA extractions were
amplified by real time PCR with primers targeting the class 1
integron-integrase gene (int[1). Standard curves for absolute
quantification of intI1 were produced from serial dilutions of E. coli
SK4903 and enumerated by viable plate counts. Molecular preva-
lence was calculated by dividing the number of target genes by the
number of 16S rRNA copies, with corrections made for 16S rRNA
copy number. One sewage effluent replicate from the Kennet did
not amplify.

2.5. Bioinformatics

We used CloVR 1.0 RC4 (Angiuoli et al., 2011) on the Data
Intensive Academic Grid (DIAG, University of Maryland, USA) to run
the QIIME workflow 'pick_otus_through_otu_tables.py' (Caporaso
et al., 2010). For a detailed description of the settings please see
section 2.5 of the supplementary methods. After quality control, the
data set consisted of 66,073 raw reads for the 6 flumes of the
Kennet sewage study, and 250,350 raw reads for the 8 flumes of the
Lambourn sewage study. Two of the Lambourn samples (S1 and S2)
together contained more than 50% of the raw sequences from the
Lambourn study. The Sequencing Facility started the sequencing
process with equal amounts of DNA, which suggests that the dif-
ferential amplification might be due to the barcodes used. The OTU
table was rarefied (see below) to reduce the effects that this rela-
tively deeper sequencing of two samples might have had on sta-
tistical evaluation of species richness and diversity.

Following from earlier studies (Pillet et al., 2011; Lindemann
et al., 2013) we used the chloroplast 16S rRNA to focus on the
algal communities. Therefore, of those OTU's that were identified to
genus level, we divided the community into algal-derived chloro-
plast reads and bacterial (including cyanobacterial) reads. We
equilibrated the number of sequences per sample by rarefaction
(randomly sampling without replacement (Hamady et al., 2009;
Koren et al., 2013), resulting in 1589 algal sequences per sample,
and 1390 bacterial sequences per sample. The rarefied OTU table
lists 2765 bacterial OTUs and 350 eukaryotic OTUs. Any OTUs that
are discussed on the species level were blasted individually against
the RDP database (Cole et al., 2009). Only fragments that could be
matched at 97% or above were classified to species level. The
rarefied OTU tables were imported into the R environment (www.r-
project.org) for statistical analysis and into Galaxy (Afgan et al,,
2016) where we used PICRUSt (Langille et al., 2013) and MaAsLin
analysis (Tickle et al., In progress) to predict functional traits in each
community and to link those to treatments and sites. For a detailed
explanation of the analysis, see the supplementary methods, sec-
tion 2.5.

2.6. Analysis of nutrients

To measure water chemistry during the experiments, we
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manually collected one sample of river water from each flume
channel. All samples were analysed within 24 h in the Centre for
Ecology and Hydrology, to minimize errors associated with sample
instability. For a detailed description of the analysis, see the
supplementary methods, section 2.6.

3. Results
3.1. Nutrient levels

The nutrient levels measured in the experimental flumes in both
rivers at the beginning and end of the experiment (supplement/
Fig. 9) showed no difference in nutrient levels between the treat-
ment groups (control and sewage effluent). In general, the Lam-
bourn flumes had 56% less soluble reactive phosphorus (SRP) than
the Kennet flumes, but very similar total dissolved nitrogen (TDN -
100%) and silicon concentrations (102% - silicon is required pri-
marily by diatoms). The nutrient levels where also similar to
background levels measured routinely near to the sites
(supplement, Fig. 8).

3.2. Biofilm community differences

We separated the algal and bacterial biofilm components for
analysis, because sewage effluent, as a mix of different pollutants,
can affect algae and bacteria in different ways (Crane et al., 2006).
The most dominant algal organisms in both rivers were the Bacil-
lariophyta and the most common bacterial phylum was that of the
Proteobacteria (Fig. 1). A large number of OTUs remained unclas-
sified. Overall, the Lambourn and Kennet samples had distinctly

— —
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Alphaproteobacteria_Rhodobacterales

EEm Bacteria_Other

EEm Betaproteobacteria_Burkholderiales

EEm Eukaryota_Chloroplast
Gammaproteobacteria Other

mm Gammaproteobacteria_Pseudomonadales
Gammaproteobacteria_Xanthomonadales

B Proteobacteria_Other

EEm Verrucomicrobiae_Verrucomicrobiales

Fig. 1. Taxonomic barchart of all replicates at order level where identification down to
that level was possible, based on relative abundance. KC=Kennet Control, KS=Kennet
Sewage effluent, LC = Lambourn Control, LS = Lambourn Sewage effluent.

different periphyton communities (PERMANOVA Bacteria: Pseudo-
F = 18.5, p = 0.001, Algae: Pseudo-F = 112.2, p = 0.001). This is also
apparent in their rank abundance curves (Fig. 2) in which different
OTUs dominate each community both in the algal and bacterial
component of the biofilms. The biofilm communities in each river
were also differently diverse (Fig. 3, 2-way ANOVA, F = 7.6, p = 0.02
for bacteria, F = 25.4, p = 0.0004 for algae), but there were no
differences between sewage effluent and control flumes. Visual-
izing the data with an NMDS (Fig. 4), the data points cluster very
clearly by river, not by treatment. PICRUSt/MaAsLin analysis of the
16S data to predict functional traits (Langille et al., 2013) notably
showed negative correlations between the Lambourn communities
and functions relating to xenobiotic processes which point towards
sewage effluent contamination, such as naphthalene, benzylethene
or benzoate degradation, thereby confirming that the impact of
sewage effluent on the Lambourn is small.

3.3. Class 1 integron prevalence

Focusing on class 1 integron prevalence (Fig. 5) rather than di-
versity and metabolic differences between the community, a
different picture emerges. Here, the treatment (ANOVA, F = 5.11,
p = 0.045), the river (ANOVA, F = 18.83, p = 0.001) and interactions
between treatment and river (ANOVA, F = 6.42, p = 0.028) are all
significant. Both in the Kennet and in the Lambourn replicates, class
1 integron prevalence is greater in the communities exposed to
sewage effluent than in the control flumes (Fig. 5), even though
there is much more overlap in the Lambourn. The Lambourn con-
trol samples show the lowest abundance of class 1 integrons, with a
proportion of 0.07%, SE + 0.01. The Lambourn sewage samples had a
greater proportion of integrons at 0.11%, SE + 0.006. In the Kennet
control samples, integron prevalences are seven times (0.56%,
SE + 0.01) that of the Lambourn control and in the Kennet samples
treated with sewage effluent, class 1 integrons are 16 times as
abundant (1.28%, SE + 0.16) as in the Lambourn control. The dif-
ference in integron prevalence between the Kennet control and
Kennet sewage-treated samples is proportionally greater than the
difference in prevalence between the Lambourn control and
sewage-treated samples.

4. Discussion

The two experimental river sites harboured very different mi-
crobial communities (Fig. 2), probably owing to different nutrient
levels (supplement/Figs. 8 and 9) and exposure to differing levels of
sewage effluent. Further low-level addition of sewage effluent
during the experiment did not cause the treated communities to
diverge significantly from the controls, even though it is possible
that greater replication or deeper sequencing would have shown up
different patterns. The Kennet location is permanently impacted by
STW effluent. The Kennet sites' significantly lower diversity pro-
files, as compared to the Lambourn, are likely the effect of nutrient
enrichment rather than pollution by other chemicals (Hill and
Fanta, 2008; Ricciardi et al., 2009). It is possible that the Kennet
community differs from the Lambourn because it has already been
permanently altered by effluent, a phenomenon previously sug-
gested in Fechner et al. (2012) studying changes in situ and Serra
et al. (2009) in artificial indoor flume systems.

The differences in integron prevalence observed by us, however,
clearly show that modification on the species level is not the only
change to look out for, to assess a complex microbial community
subjected to pollutants. The rise in intergon prevalence in the
Kennet and Lambourn samples exposed to STW-effluent clearly
show a significant impact at the level of functional genes, even in
the absence of significant taxonomic changes. This appears to
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Fig. 2. Rank Abundance curves for both algal and bacterial communities in Kennet and Lambourn. Numbers behind the taxonomic level denote different OTUs.

confirm previous observations that effluent exposure induces
transcriptional changes and promotes antibiotic resistance (e.g.
Yergeau et al., 2010; Gaze et al., 2011; Amos et al., 2015). The higher
class 1 integron-integrase gene prevalence in the Kennet control
samples, as compared to the Lambourn, confirm a higher sewage-
effluent impact (Graham et al., 2010a,b; Gaze et al., 2011), but the
proportionally higher increase of Intll in the Kennet sewage
effluent samples as compared to the Lambourn, is surprising.

The sewage effluent that was added to the flumes was collected
from the nearest STW outlets on the Kennet and Lambourn
respectively at three times during the experiments. The rationale
was, to add the same sewage effluent that each river receives on a
regular basis. Importantly, though, sewage effluent batches, even if
from the same STW, are highly variable, depending on the mix of
substances that are being processed at the STW at a given time. This
makes it unlikely, if theoretically possible, that the Kennet

experiment was conducted with three batches of sewage effluent
that were higher in IntI1 prevalence than both the average STW
effluent it generally received and the Lambourn STW effluent,
which led to the observed differences in proportion of Intl1 be-
tween the Kennet sewage effluent and control treatments in
comparison to the Lambourn treatments. A possible reason for a
higher Intl1 prevalence in effluent could be selection pressure
through elevated levels of antibiotics (Singer et al., 2014;
Bengtsson-Palme et al., 2016), even though Bengtsson-Palme
et al. (2016) did not observe consistent enrichment of resistance
genes under elevated levels of antibiotics.

Alternatively, the time difference between the experiments
(mid-June vs early September) might have influenced the observed
result, such as through preferential uptake of Intl1 by a specific
bacterial species that is seasonal. The high within-sample vari-
ability of the 16S data (16S should per se not to be used for absolute
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abundances anyway) did not allow conclusions here.

The result could, on the other hand, point towards mechanisms
in the Kennet, which particularly promote the exchange of inte-
grons that are added through effluent as DNA or in intact cells. The
Kennet, as a sewage-effluent impacted environment, might contain
a greater concentration of pollutants than the Lambourn and
therefore select for greater IntI1 uptake. One such option would be
co-selection in response to metals (Pal et al., 2015). Other mecha-
nisms could be related to poorly-understood interactions such as
those between bacteria and phages. Phages can contain mobile
genetic elements (Parsley et al., 2010), specifically also class 1
integrons (Schmieger and Schicklmaier, 1999). Muniesa et al. (2013)
suggest that the number of antibiotic resistance genes in phages is
10 times lower than those in bacterial populations from the same
environment. As bacteriophages are thought to outnumber bacteria

NMDS of bacterial and algal biofilms, coloured by River
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Fig. 4. NMDS of all biofilm replicates with algal and bacterial components, stress:0.04.
Kennet samples are marked red, Lambourn samples blue. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

by a factor ranging from 1 to 10, this suggests that they carry a
significant number of intergons, and therefore the possibility of
phage-mediated uptake of Intl1 probably warrants investigation.
The one obvious difference between the otherwise similar
rivers, however, is the Kennet's higher nutrient load. As shown by
Amos et al. (2015), phosphorus levels in particular correlate with
class 1 integron prevalence and it appears that a heightened
nutrient load might significantly enhance the exchange of class 1
integrons and presumably also other genetic material. Indeed, Van
Elsas et al. (2003) have shown that horizontal transfer of genes in
soil biofilms was increased in the nutrient-rich rhizosphere of
plants as a result of enhanced metabolic rates and increased cell
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Fig. 5. Standard boxplots of class I integron prevalence (%) in the Kennet and
Lambourn.
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motility. It is possible that a similar process takes place in nutrient-
rich stream biofilms such as those growing in the Kennet.

5. Conclusions

Our findings highlight the role that low-level exposure to
complex polluting mixtures such as STW-effluent can play in the
spread of ARGs. If even small amounts of routinely administered
sewage effluent increase the potential to spread class 1 integrons,
and thereby antibiotic resistance, this needs to be acknowledged
more widely. Moreover, a higher nutrient load in the river might
lead to increased ARGs exchange, which means that continued
attention needs to be directed towards the still elevated nutrient
loading of many streams and rivers. If such low levels of STW
effluent as those used in our experiment trigger enhanced gene
cassette exchange through synergies with nutrient or antibiotic
medication loads, it will be difficult to stop ARG transfer by simply
lowering concentrations of nutrients or medication. It is unlikely
that the exposure of river- and stream-biofilms to STW effluent can
be stopped and it seems necessary at this point that we not only
turn our attention to the traits which enhance the distribution of
genetic material in biofilms, but study more closely what can
restrict the transfer of ARGs or what reduces the need for bacteria
to retain them.
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