47,832 research outputs found
Equilibrium fluctuation theorems compatible with anomalous response
Previously, we have derived a generalization of the canonical fluctuation
relation between heat capacity and energy fluctuations , which is able to describe the existence of macrostates with negative
heat capacities . In this work, we extend our previous results for an
equilibrium situation with several control parameters to account for the
existence of states with anomalous values in other response functions. Our
analysis leads to the derivation of three different equilibrium fluctuation
theorems: the \textit{fundamental and the complementary fluctuation theorems},
which represent the generalization of two fluctuation identities already
obtained in previous works, and the \textit{associated fluctuation theorem}, a
result that has no counterpart in the framework of Boltzmann-Gibbs
distributions. These results are applied to study the anomalous susceptibility
of a ferromagnetic system, in particular, the case of 2D Ising model.Comment: Extended version of the paper published in JSTA
Polyimide adhesives
A process was developed for preparing aromatic polyamide acids for use as adhesives by reacting an aromatic dianhydride to an approximately equimolar amount of an aromatic diamine in a water or lower alkanol miscible ether solvent. The polyamide acids are converted to polyimides by heating to the temperature range of 200 - 300 C. The polyimides are thermally stable and insoluble in ethers and other organic solvents
Geometrical aspects and connections of the energy-temperature fluctuation relation
Recently, we have derived a generalization of the known canonical fluctuation
relation between heat capacity and
energy fluctuations, which can account for the existence of macrostates with
negative heat capacities . In this work, we presented a panoramic overview
of direct implications and connections of this fluctuation theorem with other
developments of statistical mechanics, such as the extension of canonical Monte
Carlo methods, the geometric formulations of fluctuation theory and the
relevance of a geometric extension of the Gibbs canonical ensemble that has
been recently proposed in the literature.Comment: Version accepted for publication in J. Phys. A: Math and The
Process for preparing polyimide adhesives
High bonding strengths are obtained for metals and fiber-reinforced organic resin composites with no significant loss in thermo-oxidative stability of the adhesive resin
Polyimide adhesives
A process of preparing aromatic polyamide-acids for use as adhesives is described. An equimolar quantity of an aromatic dianhydride is added to a stirred solution of an aromatic diamine in a water or alcohol-miscible ether solvent to obtain a viscous polymer solution. The polymeric-acid intermediate polymer does not become insoluble but directly forms a smooth viscous polymer solution. These polyamic-acid polymers are converted, by heating in the range of 200-300 C and with pressure, to form polyimides with excellent adhesive properties
Thermodynamic fluctuation relation for temperature and energy
The present work extends the well-known thermodynamic relation for the canonical ensemble. We start from the general
situation of the thermodynamic equilibrium between a large but finite system of
interest and a generalized thermostat, which we define in the course of the
paper. The resulting identity can account for thermodynamic states
with a negative heat capacity ; at the same time, it represents a
thermodynamic fluctuation relation that imposes some restrictions on the
determination of the microcanonical caloric curve . Finally, we comment briefly on the implications of the present
result for the development of new Monte Carlo methods and an apparent analogy
with quantum mechanics.Comment: Version accepted for publication in J. Phys. A: Math and The
Models for quantitative charge imaging by atomic force microscopy
Two models are presented for quantitative charge imaging with an atomic-force microscope. The first is appropriate for noncontact mode and the second for intermittent contact (tapping) mode imaging. Different forms for the contact force are used to demonstrate that quantitative charge imaging is possible without precise knowledge of the contact interaction. From the models, estimates of the best charge sensitivity of an unbiased standard atomic-force microscope cantilever are found to be on the order of a few electrons
Self-Interacting Dark Matter Halos and the Gravothermal Catastrophe
We study the evolution of an isolated, spherical halo of self-interacting
dark matter (SIDM) in the gravothermal fluid formalism. We show that the
thermal relaxation time, , of a SIDM halo with a central density and
velocity dispersion of a typical dwarf galaxy is significantly shorter than its
age. We find a self-similar solution for the evolution of a SIDM halo in the
limit where the mean free path between collisions, , is everywhere
longer than the gravitational scale height, . Typical halos formed in this
long mean free path regime relax to a quasistationary gravothermal density
profile characterized by a nearly homogeneous core and a power-law halo where
. We solve the more general time-dependent problem and
show that the contracting core evolves to sufficiently high density that
inevitably becomes smaller than in the innermost region. The core
undergoes secular collapse to a singular state (the ``gravothermal
catastrophe'') in a time , which is longer than the
Hubble time for a typical dark matter-dominated galaxy core at the present
epoch. Our model calculations are consistent with previous, more detailed,
N-body simulations for SIDM, providing a simple physical interpretation of
their results and extending them to higher spatial resolution and longer
evolution times. At late times, mass loss from the contracting, dense inner
core to the ambient halo is significantly moderated, so that the final mass of
the inner core may be appreciable when it becomes relativistic and radially
unstable to dynamical collapse to a black hole.Comment: ApJ in press (to appear in April), 12 pages. Extremely minor changes
to agree with published versio
Electromagnetic Magic: The Relativistically Rotating Disk
A closed form analytic solution is found for the electromagnetic field of the
charged uniformly rotating conducting disk for all values of the tip speed
up to . For it becomes the Magic field of the Kerr-Newman black hole
with set to zero.
The field energy, field angular momentum and gyromagnetic ratio are
calculated and compared with those of the electron.
A new mathematical expression that sums products of 3 Legendre functions each
of a different argument, is demonstrated.Comment: 10 pages, one figur
- …