921 research outputs found

    Role of the Coulomb and the vector-isovector ρ\rho potentials in the isospin asymmetry of nuclear pseudospin

    Full text link
    We investigate the role of the Coulomb and the vector-isovector ρ\rho potentials in the asymmetry of the neutron and proton pseudospin splittings in nuclei. To this end, we solve the Dirac equation for the nucleons using central vector and scalar potentials with Woods-Saxon shape and ZZ and N−ZN-Z dependent Coulomb and ρ\rho potentials added to the vector potential. We study the effect of these potentials on the energy splittings of proton and neutron pseudospin partners along a Sn isotopic chain. We use an energy decomposition proposed in a previous work to assess the effect of a pseudospin-orbit potential on those splittings. We conclude that the effect of the Coulomb potential is quite small and the ρ\rho potential gives the main contribution to the observed isospin asymmetry of the pseudospin splittings. This isospin asymmetry results from a cancellation of the various energy terms and cannot be attributed only to the pseudospin-orbit term, confirming the dynamical character of this symmetry pointed out in previous works.Comment: 9 pages, 11 figures, uses revtex4; title was changed and several small corrections were made throughout the tex

    Pseudospin symmetry as a relativistic dynamical symmetry in the nucleus

    Get PDF
    Pseudospin symmetry in nuclei is investigated by solving the Dirac equation with Woods-Saxon scalar and vector radial potentials, and studying the correlation of the energy splittings of pseudospin partners with the nuclear potential parameters. The pseudospin interaction is related to a pseudospin-orbit term that arises in a Schroedinger-like equation for the lower component of the Dirac spinor. We show that the contribution from this term to the energy splittings of pseudospin partners is large. The near pseudospin degeneracy results from a significant cancelation among the different terms in that equation, manifesting the dynamical character of this symmetry in the nucleus. We analyze the isospin dependence of the pseudospin symmetry and find that its dynamical character is behind the different pseudospin splittings observed in neutron and proton spectra of nuclei.Comment: 13 pages, 9 figures, uses REVTeX4 macro

    Linking bone development on the caudal aspect of the distal phalanx with lameness during life

    Get PDF
    Claw horn disruption lesions (CHDL; sole hemorrhage, sole ulcer, and white line disease) cause a large proportion of lameness in dairy cattle, yet their etiopathogenesis remains poorly understood. Untreated CHDL may be associated with damage to the internal anatomy of the foot, including to the caudal aspect of the distal phalanx upon which bone developments have been reported with age and with sole ulcers at slaughter. The primary aim of this study was to assess whether bone development was associated with poor locomotion and occurrence of CHDL during a cow’s life. A retrospective cohort study imaged 282 hind claws from 72 Holstein-Friesian dairy cows culled from a research herd using X-ray micro–computed tomography (ÎŒ-CT; resolution: 0.11 mm). Four measures of bone development were taken from the caudal aspect of each distal phalanx, in caudal, ventral, and dorsal directions, and combined within each claw. Cow-level variables were constructed to quantify the average bone development on all hind feet (BD-Ave) and bone development on the most severely affected claw (BD-Max). Weekly locomotion scores (1–5 scale) were available from first calving. The variables BD-Ave and BD-Max were used as outcomes in linear regression models; the explanatory variables included locomotion score during life, age, binary variables denoting lifetime occurrence of CHDL and of infectious causes of lameness, and other cow variables. Both BD-Max and BD-Ave increased with age, CHDL occurrence, and an increasing proportion of locomotion scores at which a cow was lame (score 4 or 5). The models estimated that BD-Max would be 9.8 mm (SE 3.9) greater in cows that had been lame at >50% of scores within the 12 mo before slaughter (compared with cows that had been assigned no lame scores during the same period), or 7.0 mm (SE 2.2) greater if the cow had been treated for a CHDL during life (compared with cows that had not). Additionally, histology demonstrated that new bone development was osteoma, also termed “exostosis.” Age explained much of the variation in bone development. The association between bone development and locomotion score during life is a novel finding, and bone development appears specific to CHDL. Bone development on the most severely affected foot was the best explained outcome and would seem most likely to influence locomotion score. To stop irreparable anatomical damage within the foot, early identification of CHDL and effective treatment could be critical

    Evaluation of treatments for claw horn lesions in dairy cows in a randomized controlled trial

    Get PDF
    Lameness is one of the most significant endemic disease problems facing the dairy industry. Claw horn lesions (principally sole hemorrhage, sole ulcer, and white line disease) are some of the most prevalent conditions. Despite the fact that thousands of animals are treated for these conditions every year, experimental evidence is limited on the most effective treatment protocols. A randomized, positively controlled clinical trial was conducted to test the recovery of newly lame cows with claw horn lesions. Animals on 5 farms were locomotion scored every 2 wk. Cows were eligible for recruitment if they had 2 nonlame scores followed by a lame score and had a claw horn lesion on a single claw of a single foot. Following a therapeutic trim, enrolled cows were randomly allocated to 1 of 4 treatments: treatment 1—no further treatment (positive control; TRM), treatment 2—trim plus a block on the sound claw (TB), treatment 3—trim plus a 3-d course of the nonsteroidal anti-inflammatory drug (NSAID) ketoprofen (TN), treatment 4—trim plus a block plus ketoprofen (TBN). The primary outcome measure was locomotion score 35 d after treatment, by an observer blind to treatment group. Descriptive statistics suggested that treatment groups were balanced at the time of enrollment, that is, randomization was successful. Based on a sound locomotion score (score 0) 35 d after treatment, the number of cures was 11 of 45 (24.4%) for TRM, 14 of 39 (35.9%) for TB, 12 of 42 (28.6%) for TN, and 23 of 41 (56.1%) for TBN. The difference between TBN and TRM was significant. To test for confounding imbalances between treatment groups, logistic regression models were built with 2 outcomes, either sound (score 0) or nonlame (score 0 or 1) 35 d after treatment. Compared with TRM, animals that received TBN were significantly more likely to cure to a sound outcome. Farm, treatment season, lesion diagnosis, limb affected, treatment operator, and stage of lactation were included in the final models. Our work suggests that lameness cure is maximized with NSAID treatment in addition to the common practices of therapeutic trimming and elevation of the diseased claw using a block when cows are newly and predominantly mildly lame

    Noise Can Reduce Disorder in Chaotic Dynamics

    Full text link
    We evoke the idea of representation of the chaotic attractor by the set of unstable periodic orbits and disclose a novel noise-induced ordering phenomenon. For long unstable periodic orbits forming the strange attractor the weights (or natural measure) is generally highly inhomogeneous over the set, either diminishing or enhancing the contribution of these orbits into system dynamics. We show analytically and numerically a weak noise to reduce this inhomogeneity and, additionally to obvious perturbing impact, make a regularizing influence on the chaotic dynamics. This universal effect is rooted into the nature of deterministic chaos.Comment: 11 pages, 5 figure

    Extrinsic CPT Violation in Neutrino Oscillations in Matter

    Full text link
    We investigate matter-induced (or extrinsic) CPT violation effects in neutrino oscillations in matter. Especially, we present approximate analytical formulas for the CPT-violating probability differences for three flavor neutrino oscillations in matter with an arbitrary matter density profile. Note that we assume that the CPT invariance theorem holds, which means that the CPT violation effects arise entirely because of the presence of matter. As special cases of matter density profiles, we consider constant and step-function matter density profiles, which are relevant for neutrino oscillation physics in accelerator and reactor long baseline experiments as well as neutrino factories. Finally, the implications of extrinsic CPT violation on neutrino oscillations in matter for several past, present, and future long baseline experiments are estimated.Comment: 47 pages, 7 figures, RevTeX4. Final version to be published in Phys. Rev.
    • 

    corecore