89,386 research outputs found
Particle acceleration by shocks in supernova remnants
Particle acceleration occurs on a range of scales from AU in the heliosphere
to Mpc in clusters of galaxies and to energies ranging from MeV to EeV. A
number of acceleration processes have been proposed, but diffusive shock
acceleration (DSA) is widely invoked as the predominant mechanism. DSA operates
on all these scales and probably to the highest energies. DSA is simple, robust
and predicts a universal spectrum. However there are still many unknowns
regarding particle acceleration. This paper focuses on the particular question
of whether supernova remnants (SNR) can produce the Galactic CR spectrum up to
the knee at a few PeV. The answer depends in large part on the detailed physics
of diffusive shock acceleration.Comment: Invited talk at the 33rd International Cosmic Ray Conference, Rio de
Janeiro, Brazil, 2-9 July 2013. Submitted for publication in a special issue
of the Brazilian Journal of Physic
Bell's theorem as a signature of nonlocality: a classical counterexample
For a system composed of two particles Bell's theorem asserts that averages
of physical quantities determined from local variables must conform to a family
of inequalities. In this work we show that a classical model containing a local
probabilistic interaction in the measurement process can lead to a violation of
the Bell inequalities. We first introduce two-particle phase-space
distributions in classical mechanics constructed to be the analogs of quantum
mechanical angular momentum eigenstates. These distributions are then employed
in four schemes characterized by different types of detectors measuring the
angular momenta. When the model includes an interaction between the detector
and the measured particle leading to ensemble dependencies, the relevant Bell
inequalities are violated if total angular momentum is required to be
conserved. The violation is explained by identifying assumptions made in the
derivation of Bell's theorem that are not fulfilled by the model. These
assumptions will be argued to be too restrictive to see in the violation of the
Bell inequalities a faithful signature of nonlocality.Comment: Extended manuscript. Significant change
Not throwing out the baby with the bathwater: Bell's condition of local causality mathematically 'sharp and clean'
The starting point of the present paper is Bell's notion of local causality
and his own sharpening of it so as to provide for mathematical formalisation.
Starting with Norsen's (2007, 2009) analysis of this formalisation, it is
subjected to a critique that reveals two crucial aspects that have so far not
been properly taken into account. These are (i) the correct understanding of
the notions of sufficiency, completeness and redundancy involved; and (ii) the
fact that the apparatus settings and measurement outcomes have very different
theoretical roles in the candidate theories under study. Both aspects are not
adequately incorporated in the standard formalisation, and we will therefore do
so. The upshot of our analysis is a more detailed, sharp and clean mathematical
expression of the condition of local causality. A preliminary analysis of the
repercussions of our proposal shows that it is able to locate exactly where and
how the notions of locality and causality are involved in formalising Bell's
condition of local causality.Comment: 14 pages. To be published in PSE volume "Explanation, Prediction, and
Confirmation", edited by Dieks, et a
Asymptotic Dimension
The asymptotic dimension theory was founded by Gromov in the early 90s. In
this paper we give a survey of its recent history where we emphasize two of its
features: an analogy with the dimension theory of compact metric spaces and
applications to the theory of discrete groups.Comment: Added some remarks about coarse equivalence of finitely generated
groups
- …