29 research outputs found

    Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities

    Get PDF
    We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25°C to 37°C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins

    Antifungal activity of a novel chromene dimer

    Get PDF
    The activity on Aspergillus spp. growth and on ochratoxin A production of two novel chromene dimers (3) was evaluated. The results of the bioassays indicate that the chromene dimer 3a inhibited mycelia growth by approximately 50% (EC50) at 140.1 μmol L−1 for A. niger, 384.2 μmol L−1 for A. carbonarius, 69.1 μmol L−1 for A. alliaceus and 559.1 μmol L−1 for A. ochraceus. When applied at concentrations of 2 mmol L−1, 3a totally inhibited the growth of all Aspergillus spp. tested. Furthermore, ochratoxin A production by A. alliaceus was reduced by about 94% with a 200 μmol L−1 solution of this compound. A moderate inhibitory effect was observed for the analogous structure 3b on ochratoxin A production but not in mycelia growth. No inhibition was registered for compounds 2a and 2b, used as synthetic precursors of the dimeric species 3.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/ 11228/2002
    corecore