340 research outputs found

    Bayesian change-point analyses in ecology

    Get PDF
    • Ecological and biological processes can change from one state to another once a threshold has been crossed in space or time. Threshold responses to incremental changes in underlying variables can characterize diverse processes from climate change to the desertification of arid lands from overgrazing. • Simultaneously estimating the location of thresholds and associated ecological parameters can be difficult: ecological data are often \u27noisy\u27, which can make the identification of the locations of ecological thresholds challenging. • We illustrate this problem using two ecological examples and apply a class of statistical models well-suited to addressing this problem. We first consider the case of estimating allometric relationships between tree diameter and height when the trees have distinctly different growth modes across life-history stages. We next estimate the effects of canopy gaps and dense understory vegetation on tree recruitment in transects that transverse both canopy and gap conditions. • The Bayesian change-point models that we present estimate both threshold locations and the slope or level of ecological quantities of interest, while incorporating uncertainty in the change-point location into these estimates. This class of models is suitable for problems with multiple thresholds and can account for spatial or temporal autocorrelation. © The Authors (2007)

    Metabolic Differentiation of Early Lyme Disease from Southern Tick-associated Rash Illness (STARI)

    Get PDF
    Lyme disease, the most commonly reported vector-borne disease in the United States, results from infection with Borrelia burgdorferi. Early clinical diagnosis of this disease is largely based on the presence of an erythematous skin lesion for individuals in high-risk regions. This, however, can be confused with other illnesses including southern tick-associated rash illness (STARI), an illness that lacks a defined etiological agent or laboratory diagnostic test, and is coprevalent with Lyme disease in portions of the eastern United States. By applying an unbiased metabolomics approach with sera retrospectively obtained from well-characterized patients, we defined biochemical and diagnostic differences between early Lyme disease and STARI. Specifically, a metabolic biosignature consisting of 261 molecular features (MFs) revealed that altered N-acyl ethanolamine and primary fatty acid amide metabolism discriminated early Lyme disease from STARI. Development of classification models with the 261-MF biosignature and testing against validation samples differentiated early Lyme disease from STARI with an accuracy of 85 to 98%. These findings revealed metabolic dissimilarity between early Lyme disease and STARI, and provide a powerful and new approach to inform patient management by objectively distinguishing early Lyme disease from an illness with nearly identical symptoms

    Elasticity model of a supercoiled DNA molecule

    Full text link
    Within a simple elastic theory, we study the elongation versus force characteristics of a supercoiled DNA molecule at thermal equilibrium in the regime of small supercoiling. The partition function is mapped to the path integral representation for a quantum charged particle in the field of a magnetic monopole with unquantized charge. We show that the theory is singular in the continuum limit and must be regularised at an intermediate length scale. We find good agreement with existing experimental data, and point out how to measure the twist rigidity accurately.Comment: Latex, 4 pages. The figure contains new experimental data, giving a new determination of the twist rigidit

    Perovskite-perovskite tandem photovoltaics with optimized bandgaps

    Full text link
    We demonstrate four and two-terminal perovskite-perovskite tandem solar cells with ideally matched bandgaps. We develop an infrared absorbing 1.2eV bandgap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3FA_{0.75}Cs_{0.25}Sn_{0.5}Pb_{0.5}I_3, that can deliver 14.8 % efficiency. By combining this material with a wider bandgap FA0.83Cs0.17Pb(I0.5Br0.5)3FA_{0.83}Cs_{0.17}Pb(I_{0.5}Br_{0.5})_3 material, we reach monolithic two terminal tandem efficiencies of 17.0 % with over 1.65 volts open-circuit voltage. We also make mechanically stacked four terminal tandem cells and obtain 20.3 % efficiency. Crucially, we find that our infrared absorbing perovskite cells exhibit excellent thermal and atmospheric stability, unprecedented for Sn based perovskites. This device architecture and materials set will enable 'all perovskite' thin film solar cells to reach the highest efficiencies in the long term at the lowest costs

    The prevalence of systemic autoimmune rheumatic diseases in Canadian pediatric populations: administrative database estimates

    Get PDF
    CI 17.9, 29.2). SARDs were more common in females than in males across all provinces. There was a slightly higher prevalence among those living in urban compared to rural areas of Alberta (rate difference 14.4, 95 % CI 8.6, 20.1) and Saskatchewan (rate difference 13.8, 95 % CI 1.0, 26.6). Our results provide population-based prevalence estimates of pediatric SARDs in four Canadian provinces. Keywords Pediatric rheumatic diseases · Systemic autoimmune rheumatic diseases · Epidemiology · Disease prevalence Abstract To estimate systemic autoimmune rheumatic disease (SARD) prevalence using administrative data for pediatric populations in four Canadian provinces. Physician billing claims and inpatient hospitalizations from Alberta, Manitoba, Quebec, and Saskatchewan were used to define cases aged ≤18 years with a SARD diagnosis code in: one or more hospitalization, two or more physician visits within 2 years and at least 2 months apart, or one or more physician visit to a rheumatologist. Estimates ranged from 15.9/100,000 in Quebec [95 % confidence interval (95 % CI) 14.1, 18.0] to 23.0/100,000 in Manitoba (95 % Rheumatology INTERNATIONA

    Integrating Teaching and Research in Undergraduate Biology Laboratory Education

    Get PDF
    A course recently designed and implemented at Stanford University applies practical suggestions for creating research-based undergraduate courses that benefit both teaching and research

    Large scale statistical inference of signaling pathways from RNAi and microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advent of RNA interference techniques enables the selective silencing of biologically interesting genes in an efficient way. In combination with DNA microarray technology this enables researchers to gain insights into signaling pathways by observing downstream effects of individual knock-downs on gene expression. These secondary effects can be used to computationally reverse engineer features of the upstream signaling pathway.</p> <p>Results</p> <p>In this paper we address this challenging problem by extending previous work by Markowetz <it>et al</it>., who proposed a statistical framework to score networks hypotheses in a Bayesian manner. Our extensions go in three directions: First, we introduce a way to omit the data discretization step needed in the original framework via a calculation based on <it>p</it>-values instead. Second, we show how prior assumptions on the network structure can be incorporated into the scoring scheme using regularization techniques. Third and most important, we propose methods to scale up the original approach, which is limited to around 5 genes, to large scale networks.</p> <p>Conclusion</p> <p>Comparisons of these methods on artificial data are conducted. Our proposed module network is employed to infer the signaling network between 13 genes in the ER-<it>α </it>pathway in human MCF-7 breast cancer cells. Using a bootstrapping approach this reconstruction can be found with good statistical stability.</p> <p>The code for the module network inference method is available in the latest version of the <it>R</it>-package <it>nem</it>, which can be obtained from the Bioconductor homepage.</p

    Spherical perspective

    Get PDF
    We survey the present state of spherical perspective, regarding both mathematical structure and drawing practice, with a view to applications in the visual arts. We define a spherical perspective as the entailment of a conical anamorphosis with a compact flattening of the visual sphere. We examine a general framework for solving spherical perspectives, exemplified with the azimuthal equidistant (“fisheye”) and equirectangular cases. We consider the relation between spherical and curvilinear perspectives. We briefly discuss computer renderings but focus on methods adapted to freehand sketching or technical drawing with simple instruments such as ruler and compass. We discuss how handmade spherical perspective drawings can generate immersive anamorphoses, which can be rendered as virtual reality panoramas, leading to hybrid visual creations that bridge the gap between traditional drawing and digital environments.info:eu-repo/semantics/publishedVersio

    Antigen-Engaged B Cells Undergo Chemotaxis toward the T Zone and Form Motile Conjugates with Helper T Cells

    Get PDF
    Interactions between B and T cells are essential for most antibody responses, but the dynamics of these interactions are poorly understood. By two-photon microscopy of intact lymph nodes, we show that upon exposure to antigen, B cells migrate with directional preference toward the B-zone–T-zone boundary in a CCR7-dependent manner, through a region that exhibits a CCR7-ligand gradient. Initially the B cells show reduced motility, but after 1 d, motility is increased to approximately 9 μm/min. Antigen-engaged B cells pair with antigen-specific helper T cells for 10 to more than 60 min, whereas non-antigen-specific interactions last less than 10 min. B cell–T cell conjugates are highly dynamic and migrate extensively, being led by B cells. B cells occasionally contact more than one T cell, whereas T cells are strictly monogamous in their interactions. These findings provide evidence of lymphocyte chemotaxis in vivo, and they begin to define the spatiotemporal cellular dynamics associated with T cell–dependent antibody responses
    corecore