13 research outputs found

    The TESS Grand Unified Hot Jupiter Survey. II. Twenty New Giant Planets

    Get PDF
    NASA's Transiting Exoplanet Survey Satellite (TESS) mission promises to improve our understanding of hot Jupiters by providing an all-sky, magnitude-limited sample of transiting hot Jupiters suitable for population studies. Assembling such a sample requires confirming hundreds of planet candidates with additional follow-up observations. Here, we present twenty hot Jupiters that were detected using TESS data and confirmed to be planets through photometric, spectroscopic, and imaging observations coordinated by the TESS Follow-up Observing Program (TFOP). These twenty planets have orbital periods shorter than 7 days and orbit relatively bright FGK stars (10.9<G<13.010.9 < G < 13.0). Most of the planets are comparable in mass to Jupiter, although there are four planets with masses less than that of Saturn. TOI-3976 b, the longest period planet in our sample (P=6.6P = 6.6 days), may be on a moderately eccentric orbit (e=0.18±0.06e = 0.18\pm0.06), while observations of the other targets are consistent with them being on circular orbits. We measured the projected stellar obliquity of TOI-1937A b, a hot Jupiter on a 22.4 hour orbit with the Rossiter-McLaughlin effect, finding the planet's orbit to be well-aligned with the stellar spin axis (λ=4.0±3.5|\lambda| = 4.0\pm3.5^\circ). We also investigated the possibility that TOI-1937 is a member of the NGC 2516 open cluster, but ultimately found the evidence for cluster membership to be ambiguous. These objects are part of a larger effort to build a complete sample of hot Jupiters to be used for future demographic and detailed characterization work.Comment: 67 pages, 11 tables, 13 figures, 2 figure sets. Resubmitted to ApJS after revision

    The TESS-Keck Survey. XI. Mass Measurements for Four Transiting sub-Neptunes orbiting K dwarf TOI-1246

    Get PDF
    Multi-planet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V=11.6, K=9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31 d, 5.90 d, 18.66 d, and 37.92 d. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97±0.06 R⊕,2.47±0.08 R⊕,3.46±0.09 R⊕, 3.72±0.16 R⊕), and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1±1.1M⊕, 8.8±1.2M⊕, 5.3±1.7M⊕, 14.8±2.3M⊕). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (Pe/Pd=2.03) and exhibit transit timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only six systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70±0.24 to 3.21±0.44g/cm3, implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 ± 3.6 M⊕. This planet candidate is exterior to TOI-1246 e with a candidate period of 93.8 d, and we discuss the implications if it is confirmed to be planetary in nature

    The TESS-Keck Survey. XI. Mass Measurements for Four Transiting Sub-Neptunes Orbiting K Dwarf TOI-1246

    Get PDF
    Multiplanet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V = 11.6, K = 9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31, 5.90, 18.66, and 37.92 days. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97 +/- 0.06 R (circle plus), 2.47 +/- 0.08 R (circle plus), 3.46 +/- 0.09 R (circle plus), and 3.72 +/- 0.16 R (circle plus)) and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1 +/- 1.1 M (circle plus), 8.8 +/- 1.2 M (circle plus), 5.3 +/- 1.7 M (circle plus), and 14.8 +/- 2.3 M (circle plus)). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (P (e)/P ( d ) = 2.03) and exhibit transit-timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only five systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70 +/- 0.24 to 3.21 +/- 0.44 g cm(-3), implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 +/- 3.6 M (circle plus). This planet candidate is exterior to TOI-1246 e, with a candidate period of 93.8 days, and we discuss the implications if it is confirmed to be planetary in nature

    Another Shipment of Six Short-Period Giant Planets from TESS

    Get PDF
    We present the discovery and characterization of six short-period, transiting giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program (TFOP) Working Group, we have determined that the planets are Jovian-sized (RP_{P} = 1.00-1.45 RJ_{J}), have masses ranging from 0.92 to 5.35 MJ_{J}, and orbit F, G, and K stars (4753 << Teff_{eff} << 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days, ee = 0.220±0.0530.220\pm0.053), TOI-2145 b (P = 10.261 days, ee = 0.1820.049+0.0390.182^{+0.039}_{-0.049}), and TOI-2497 b (P = 10.656 days, ee = 0.1960.053+0.0590.196^{+0.059}_{-0.053}). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 << log\log g <<4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; 5.350.35+0.325.35^{+0.32}_{-0.35} MJ_{\rm J} (TOI-2145 b) and 5.21±0.525.21\pm0.52 MJ_{\rm J} (TOI-2497 b). These six new discoveries contribute to the larger community effort to use {\it TESS} to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA

    Identification of the top TESS objects of interest for atmospheric characterization of transiting exoplanets with JWST

    Get PDF
    Funding: Funding for the TESS mission is provided by NASA's Science Mission Directorate. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This paper is based on observations made with the MuSCAT3 instrument, developed by the Astrobiology Center and under financial support by JSPS KAKENHI (grant No. JP18H05439) and JST PRESTO (grant No. JPMJPR1775), at Faulkes Telescope North on Maui, HI, operated by the Las Cumbres Observatory. This paper makes use of data from the MEarth Project, which is a collaboration between Harvard University and the Smithsonian Astrophysical Observatory. The MEarth Project acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering, the National Science Foundation under grant Nos. AST-0807690, AST-1109468, AST-1616624 and AST-1004488 (Alan T. Waterman Award), the National Aeronautics and Space Administration under grant No. 80NSSC18K0476 issued through the XRP Program, and the John Templeton Foundation. C.M. would like to gratefully acknowledge the entire Dragonfly Telephoto Array team, and Bob Abraham in particular, for allowing their telescope bright time to be put to use observing exoplanets. B.J.H. acknowledges support from the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program (grant No. 80NSSC20K1551) and support by NASA under grant No. 80GSFC21M0002. K.A.C. and C.N.W. acknowledge support from the TESS mission via subaward s3449 from MIT. D.R.C. and C.A.C. acknowledge support from NASA through the XRP grant No. 18-2XRP18_2-0007. C.A.C. acknowledges that this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). S.Z. and A.B. acknowledge support from the Israel Ministry of Science and Technology (grant No. 3-18143). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant No. PDR T.0120.21. The postdoctoral fellowship of K.B. is funded by F.R.S.-FNRS grant No. T.0109.20 and by the Francqui Foundation. H.P.O.'s contribution has been carried out within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation under grant Nos. 51NF40_182901 and 51NF40_205606. F.J.P. acknowledges financial support from the grant No. CEX2021-001131-S funded by MCIN/AEI/ 10.13039/501100011033. A.J. acknowledges support from ANID—Millennium Science Initiative—ICN12_009 and from FONDECYT project 1210718. Z.L.D. acknowledges the MIT Presidential Fellowship and that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 1745302. P.R. acknowledges support from the National Science Foundation grant No. 1952545. This work is partly supported by JSPS KAKENHI grant Nos. JP17H04574, JP18H05439, JP21K20376; JST CREST grant No. JPMJCR1761; and Astrobiology Center SATELLITE Research project AB022006. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. D.D. acknowledges support from TESS Guest Investigator Program grant Nos. 80NSSC22K1353, 80NSSC22K0185, and 80NSSC23K0769. A.B. acknowledges the support of M.V. Lomonosov Moscow State University Program of Development. T.D. was supported in part by the McDonnell Center for the Space Sciences. V.K. acknowledges support from the youth scientific laboratory project, topic FEUZ-2020-0038.JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperature Teq and planetary radius Rp and are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.Peer reviewe

    NEID Rossiter–McLaughlin Measurement of TOI-1268b: A Young Warm Saturn Aligned with Its Cool Host Star

    Get PDF
    Close-in gas giants present a surprising range of stellar obliquity, the angle between a planet's orbital axis and its host star's spin axis. It is unclear whether the obliquities reflect the planets' dynamical history (e.g., aligned for in situ formation or disk migration versus misaligned for high-eccentricity tidal migration) or whether other mechanisms (e.g., primordial misalignment or planet-star interactions) are more important in sculpting the obliquity distribution. Here we present the stellar obliquity measurement of TOI-1268 (TIC-142394656, V mag ∼10.9), a young K-type dwarf hosting an 8.2 day period, Saturn-sized planet. TOI-1268's lithium abundance and rotation period suggest the system age between the ages of the Pleiades cluster (∼120 Myr) and the Prasepe cluster (∼670 Myr). Using the newly commissioned NEID spectrograph, we constrain the stellar obliquity of TOI-1268 via the Rossiter-McLaughlin effect from both radial velocity and Doppler tomography signals. The 3σ upper bounds of the projected stellar obliquity λ from both models are below 60°. The large host star separation (a/R ∗ ∼17), combined with the system's young age, makes it unlikely that the planet has realigned its host star. The stellar obliquity measurement of TOI-1268 probes the architecture of a young gas giant beyond the reach of tidal realignment (a/R ∗ ≲10) and reveals an aligned or slightly misaligned system

    Occurrence Rate of Hot Jupiters Around Early-type M Dwarfs Based on Transiting Exoplanet Survey Satellite Data

    No full text
    We present an estimate of the occurrence rate of hot Jupiters (7 R _⊕ ≤ R _p ≤ 2 R _J , 0.8 ≤ P _b ≤ 10 days) around early-type M dwarfs based on stars observed by the Transiting Exoplanet Survey Satellite (TESS) during its primary mission. We adopt stellar parameters from the TESS Input Catalog and construct a sample of 60,819 M dwarfs with 10.5 ≤ T _mag ≤ 13.5, effective temperatures 2900 ≤ T _eff ≤ 4000 K, and stellar masses 0.45 ≤ M _* ≤ 0.65 M _⊙ . We conduct a uninformed transit search using a detection pipeline based on the box least square search and characterize the searching completeness through an injection and recovery experiment. We combine a series of vetting steps including light centroid measurement, odd/even and secondary eclipse analysis, rotation and transit period synchronization tests as well as inspecting the ground-based photometric, spectroscopic, and imaging observations. Finally, we find a total of nine planet candidates, all of which are known TESS objects of interest. We obtain an occurrence rate of 0.27% ± 0.09% for hot Jupiters around early-type M dwarfs that satisfy our selection criteria. Compared with previous studies, the occurrence rate of hot Jupiters around early-type M dwarfs is smaller than all measurements for FGK stars, although they are consistent within 1 σ –2 σ . There is a trend that the occurrence rate of hot Jupiters has a peak at G dwarfs and falls toward both hotter and cooler stars. Combining results from transit, radial velocity, and microlensing surveys, we find that hot Jupiters around early-type M dwarfs possibly show a steeper decrease in the occurrence rate per logarithmic semimajor axis bin ( dN/dlog10a{dN}/d{\mathrm{log}}_{10}a ) when compared with FGK stars

    EXPLANATION: Exoplanet and Transient Event Investigation Project—Optical Facilities and Solutions

    No full text
    Over the past decades, the achievements in astronomical instrumentation have given rise to a number of novel advanced studies related to the analysis of large arrays of observational data. One of the most famous of these studies is a study of transient events in the near and far space and a search for exoplanets. The main requirements for such kinds of projects are a simultaneous coverage of the largest possible field of view with the highest possible detection limits and temporal resolution. In this study, we present a similar project aimed at creating an extensive, continuously updated survey of transient events and exoplanets. To date, the core of the project incorporates several 0.07–2.5 m optical telescopes and the 6-m BTA telescope of the Special Astrophysical Observatory of RAS (Russia), a number of other Russian observatories and the Bonhyunsan observatory of the Korea Astronomy and Space Science Institute (South Korea). Our attention is mainly focused on the description of two groups of small, wide-angle optical telescopes for primary detection. All the telescopes are originally designed for the goals of the project and may be of interest to the scientific community. A description is also given for a new, high-precision optical spectrograph for the Doppler studies of transient and exoplanet events detected within the project. We present here the philosophy, expectations and first results obtained during the first year of running the project

    TOI-1518b: A Misaligned Ultra-hot Jupiter with Iron in Its Atmosphere

    No full text
    We present the discovery of TOI-1518b-an ultra-hot Jupiter orbiting a bright star (V=8.95). The transiting planet is confirmed using high-resolution optical transmission spectra from EXPRES. It is inflated, with Rp=1.875±0.053 RJ, and exhibits several interesting properties, including a misaligned orbit ( - 240.34+0.98 0.93 degrees) and nearly grazing transit ( = - b 0.9036+0.0053 0.0061). The planet orbits a fast-rotating F0 host star (Teff;7300 K) in 1.9 days and experiences intense irradiation. Notably, the TESS data show a clear secondary eclipse with a depth of 364±28 ppm and a significant phase-curve signal, from which we obtain a relative day-night planetary flux difference of roughly 320 ppm and a 5.2s detection of ellipsoidal distortion on the host star. Prompted by recent detections of atomic and ionized species in ultrahot Jupiter atmospheres, we conduct an atmospheric cross-correlation analysis. We detect neutral iron (5.2s), at = - K 157+ p 44 68 km s-1 and = - - V 16+ sys 4 2, adding another object to the small sample of highly irradiated gas-giant planets with Fe detections in transmission. Detections so far favor particularly inflated gas giants with radii 1.78 RJ, which may be due to observational bias. With an equilibrium temperature of Teq=2492±38 K and a measured dayside brightness temperature of 3237±59 K (assuming zero geometric albedo), TOI-1518b is a promising candidate for future emission spectroscopy to probe for a thermal inversion
    corecore