14 research outputs found

    Pulmonary embolism response teams: Changing the paradigm in the care for acute pulmonary embolism

    Get PDF
    Pulmonary embolism response teams (PERTs) have emerged as a multidisciplinary, multispecialty team of experts in the care of highly complex symptomatic acute pulmonary embolism (PE), with a centralized unique activation process, providing rapid multimodality assessment and risk stratification, formulating the best individualized diagnostic and therapeutic approach, streamlining the care in challenging clinical case scenarios (e.g., intermediate-high risk and high-risk PE), and facilitating the implementation of the recommended therapeutic strategies on time. PERTs are currently changing how complex acute PE cases are approached. The structure, organization, and function of a given PERT may vary from hospital to hospital, depending on local expertise, specific resources, and infrastructure for a given academic hospital center. Current emerging data demonstrate the value of PERTs in improving time to PE diagnosis; shorter time to initiation of anticoagulation reducing hospital length of stay; increasing use of advanced therapies without an increase in bleeding; and in some reports, decreasing mortality. Importantly, PERTs are positively impacting outcomes by changing the paradigm of care for acute PE through global adoption by the health-care community

    Exposure to ambient particulate matter is associated with accelerated functional decline in idiopathic pulmonary fibrosis

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis (IPF), a progressive disease with an unknown pathogenesis, may be due in part to an abnormal response to injurious stimuli by alveolar epithelial cells. Air pollution and particulate inhalation of matter evoke a wide variety of pulmonary and systemic inflammatory diseases. We therefore hypothesized that increased average ambient particulate matter (PM) concentrations would be associated with an accelerated rate of decline in FVC in IPF. METHODS: We identified a cohort of subjects seen at a single university referral center from 2007 to 2013. Average concentrations of particulate matter < 10 and < 2.5 μg/m3 (PM10 and PM2.5, respectively) were assigned to each patient based on geocoded residential addresses. A linear multivariable mixed-effects model determined the association between the rate of decline in FVC and average PM concentration, controlling for baseline FVC at first measurement and other covariates. RESULTS: One hundred thirty-five subjects were included in the final analysis after exclusion of subjects missing repeated spirometry measurements and those for whom exposure data were not available. There was a significant association between PM10 levels and the rate of decline in FVC during the study period, with each μg/m3 increase in PM10 corresponding with an additional 46 cc/y decline in FVC (P = .008). CONCLUSIONS: Ambient air pollution, as measured by average PM10 concentration, is associated with an increase in the rate of decline of FVC in IPF, suggesting a potential mechanistic role for air pollution in the progression of disease

    Diagnosis, Treatment and Follow Up of Acute Pulmonary Embolism: Consensus Practice from the PERT Consortium

    Get PDF
    Pulmonary embolism (PE) is a life-threatening condition and a leading cause of morbidity and mortality. There have been many advances in the field of PE in the last few years, requiring a careful assessment of their impact on patient care. However, variations in recommendations by different clinical guidelines, as well as lack of robust clinical trials, make clinical decisions challenging. The Pulmonary Embolism Response Team Consortium is an international association created to advance the diagnosis, treatment, and outcomes of patients with PE. In this consensus practice document, we provide a comprehensive review of the diagnosis, treatment, and follow-up of acute PE, including both clinical data and consensus opinion to provide guidance for clinicians caring for these patients

    Ambrisentan: a review of its use in pulmonary arterial hypertension

    No full text
    Pulmonary arterial hypertension (PAH) is a progressive disease defined by an elevation in pulmonary arterial pressure that can lead to right heart failure and death. Ambrisentan is a selective endothelin receptor antagonist approved for the treatment of idiopathic, heritable PAH and connective tissue disease-associated PAH. Ambrisentan has been shown to improve exercise capacity and hemodynamics with an acceptable side-effect profile. It has also proven to be safely used in combination with other PAH-specific medications, especially with phosphodiesterase-5 inhibitors. In the recent randomized trial, AMBITION, it was shown that upfront combination therapy of ambrisentan and tadalafil significantly decreased the risk of clinical failure compared with monotherapy. This review describes the drug profile of ambrisentan and its safety and efficacy in the treatment of PAH

    Outcomes of Pulmonary Arterial Hypertension Are Improved in a Specialty&nbsp;Care Center

    No full text
    BackgroundPulmonary arterial hypertension (PAH) is characterized by elevated pulmonary arterial pressures and is managed by vasodilator therapies. Current guidelines encourage PAH management in specialty care centers (SCCs), but evidence is sparse regarding improvement in clinical outcomes and correlation to vasodilator use with referral.Research questionIs PAH management at SCCs associated with improved clinical outcomes?Study designand methodsA single-center, retrospective study was performed at the University of Pittsburgh Medical Center (UPMC; overseeing 40 hospitals). Patients with PAH were identified between 2008 and 2018 and classified into an SCC or non-SCC cohort. Cox proportional hazard modeling was done to compare for all-cause mortality, as was negative binomial regression modeling for hospitalizations. Vasodilator therapy was included to adjust outcomes.ResultsOf 580 patients with PAH at UPMC, 455 (78%) were treated at the SCC, comprising a younger (58.8 vs&nbsp;64.8 years; P&nbsp;&lt; .001) and more often female (68.4%&nbsp;vs&nbsp;51.2%; P&nbsp;&lt; .001) population with more comorbidities without differences in race or income. SCC patients demonstrated improved survival (hazard ratio, 0.68; P&nbsp;= .012) and fewer hospitalizations (incidence ratio, 0.54; P&nbsp;&lt; .001), and provided more frequent disease monitoring. Early patient referral to SCC (&lt; 6&nbsp;months from time of diagnosis) was associated with improved outcomes compared with non-SCC patients. SCC patients were more frequently prescribed vasodilators (P&nbsp;&lt; .001) and carried more diagnostic PAH coding (P&nbsp;&lt; .001). Vasodilators were associated with improved outcomes irrespective of location but without statistical significance when comparing between locations (P &gt; .05).InterpretationThe UPMC SCC demonstrated improved outcomes in mortality and hospitalizations. The SCC benefit was multifactorial, with more frequent vasodilator therapy and disease monitoring. These findings provide robust evidence for early and regular referral of patients with PAH to SCCs
    corecore