791 research outputs found

    On the fractional Fisher information with applications to a hyperbolic-parabolic system of chemotaxis

    Get PDF
    We introduce new lower bounds for the fractional Fisher information. Equipped with these bounds we study a hyperbolic-parabolic model of chemotaxis and prove the global existence of solutions in certain dissipation regimes

    On a drift-diffusion system for semiconductor devices

    Full text link
    In this note we study a fractional Poisson-Nernst-Planck equation modeling a semiconductor device. We prove several decay estimates for the Lebesgue and Sobolev norms in one, two and three dimensions. We also provide the first term of the asymptotic expansion as t→∞t\rightarrow\infty.Comment: to appear in Annales Henri Poincar\'

    Global solutions for a hyperbolic-parabolic system of chemotaxis

    Full text link
    We study a hyperbolic-parabolic model of chemotaxis in dimensions one and two. In particular, we prove the global existence of classical solutions in certain dissipation regimes

    Critical Keller-Segel meets Burgers on S1{\mathbb S}^1: large-time smooth solutions

    Get PDF
    We show that solutions to the parabolic-elliptic Keller-Segel system on S1{\mathbb S}^1 with critical fractional diffusion (−Δ)12(-\Delta)^\frac{1}{2} remain smooth for any initial data and any positive time. This disproves, at least in the periodic setting, the large-data-blowup conjecture by Bournaveas and Calvez. As a tool, we show smoothness of solutions to a modified critical Burgers equation via a generalization of the method of moduli of continuity by Kiselev, Nazarov and Shterenberg. over a setting where the considered equation has no scaling. This auxiliary result may be interesting by itself. Finally, we study the asymptotic behavior of global solutions, improving the existing results.Comment: 17 page

    Global solutions for a supercritical drift-diffusion equation

    Full text link
    We study the global existence of solutions to a one-dimensional drift-diffusion equation with logistic term, generalizing the classical parabolic-elliptic Keller-Segel aggregation equation arising in mathematical biology. In particular, we prove that there exists a global weak solution, if the order of the fractional diffusion α∈(1−c1,2]\alpha \in (1-c_1, 2], where c1>0c_1>0 is an explicit constant depending on the physical parameters present in the problem (chemosensitivity and strength of logistic damping). Furthermore, in the range 1−c2<α≤21-c_2<\alpha\leq 2 with 0<c2<c10<c_2<c_1, the solution is globally smooth. Let us emphasize that when α<1\alpha<1, the diffusion is in the supercritical regime
    • …
    corecore