27 research outputs found

    Cytokinin preconditioning enhances multiple shoot regeneration in Pongamia pinnata (L.) Pierre - a potential, non-edible tree seed oil source for biodiesel

    Get PDF
    An efficient, highly reproducible protocol for multiple shoot induction and plant regeneration of Pongamia pinnata has been successfully developed using cotyledonary node explants. This study also demonstrates that preconditioning of explant stimulates production of multiple shoots from cotyledonary nodes of P. pinnata. The highest direct shoot regeneration (90%) with an average of 18.4 \ub1 3.1 shoots/explant were obtained when cotyledonary node explants were excised from seedlings germinated on Murashige and Skoog (MS) media supplemented with benzyladenine (BA) 1 mg l-1, and subsequently cultured on MS media with 1 mgl-1 thidiazuron (TDZ). Scanning electron microscope observations of cotyledonary node (CN) explants excised from pre-conditioned and normal seedlings, revealed larger buds with rapid development in BA-preconditioned CN explants. The addition of adenine sulphate significantly increased the average number of shoots per explant. The highest direct shoot regeneration (93%) with an average of 32.2 \ub1 0.93 shoots/explant was obtained from BA-preconditioned CN when cultured on MS media supplemented with 1 mg l-1 TDZ and 200 mg l-1 adenine sulphate (ADS). Repeated shoot proliferation was observed from BA preconditioned CN explants up to 3 cycles with an average of 15 shoots/explant/cycle when cultured on MS media supplemented with 1 mg l-1 TDZ and 150 mg l-1 L-glutamine, thus producing 45 shoots/CN explant. Shoots were elongated on hormone free MS media and rooted on 1/2 MS media supplemented with 1 mg l-1 of IBA. Rooted shoots were successfully acclimatized and established in soil with 80% success. The highly regenerative system developed in this investigation for this important tree could be a useful tool for genetic transformation

    Cytokinin preconditioning enhances multiple shoot regeneration in Pongamia pinnata (L.) Pierre - a potential, non-edible tree seed oil source for biodiesel

    Get PDF
    An efficient, highly reproducible protocol for multiple shoot induction and plant regeneration of Pongamia pinnata has been successfully developed using cotyledonary node explants. This study also demonstrates that preconditioning of explant stimulates production of multiple shoots from cotyledonary nodes of P. pinnata. The highest direct shoot regeneration (90%) with an average of 18.4 � 3.1 shoots/explant were obtained when cotyledonary node explants were excised from seedlings germinated on Murashige and Skoog (MS) media supplemented with benzyladenine (BA) 1 mg l-1, and subsequently cultured on MS media with 1 mgl-1 thidiazuron (TDZ). Scanning electron microscope observations of cotyledonary node (CN) explants excised from pre-conditioned and normal seedlings, revealed larger buds with rapid development in BA-preconditioned CN explants. The addition of adenine sulphate significantly increased the average number of shoots per explant. The highest direct shoot regeneration (93%) with an average of 32.2 � 0.93 shoots/explant was obtained from BA-preconditioned CN when cultured on MS media supplemented with 1 mg l-1 TDZ and 200 mg l-1 adenine sulphate (ADS). Repeated shoot proliferation was observed from BA preconditioned CN explants up to 3 cycles with an average of 15 shoots/explant/cycle when cultured on MS media supplemented with 1 mg l-1 TDZ and 150 mg l-1 L-glutamine, thus producing 45 shoots/CN explant. Shoots were elongated on hormone free MS media and rooted on � MS media supplemented with 1 mg l-1 of IBA. Rooted shoots were successfully acclimatized and established in soil with 80% success. The highly regenerative system developed in this investigation for this important tree could be a useful tool for genetic transformation

    Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Safflower <it>(Carthamus tinctorius L.) </it>is a difficult crop to genetically transform being susceptible to hyperhydration and poor <it>in vitro </it>root formation. In addition to traditional uses safflower has recently emerged as a broadacre platform for the production of transgenic products including modified oils and pharmaceutically active proteins. Despite commercial activities based on the genetic modification of safflower, there is no method available in the public domain describing the transformation of safflower that generates transformed T<sub>1 </sub>progeny.</p> <p>Results</p> <p>An efficient and reproducible protocol has been developed with a transformation efficiency of 4.8% and 3.1% for S-317 (high oleic acid content) and WT (high linoleic acid content) genotypes respectively. An improved safflower transformation T-DNA vector was developed, including a secreted <it>GFP </it>to allow non-destructive assessment of transgenic shoots. Hyperhydration and necrosis of <it>Agrobacterium</it>-infected cotyledons was effectively controlled by using iota-carrageenan, L-cysteine and ascorbic acid. To overcome poor <it>in vitro </it>root formation for the first time a grafting method was developed for safflower in which ~50% of transgenic shoots develop into mature plants bearing viable transgenic T<sub>1 </sub>seed. The integration and expression of secreted <it>GFP </it>and hygromycin genes were confirmed by PCR, Southern and Western blot analysis. Southern blot analysis in nine independent lines indicated that 1-7 transgenes were inserted per line and T<sub>1 </sub>progeny displayed Mendelian inheritance.</p> <p>Conclusions</p> <p>This protocol demonstrates significant improvements in both the efficiency and ease of use over existing safflower transformation protocols. This is the first complete method of genetic transformation of safflower that generates stably-transformed plants and progeny, allowing this crop to benefit from modern molecular applications.</p

    Cytokinin preconditioning enhances multiple shoot regeneration in Pongamia pinnata (L.) Pierre - a potential, non-edible tree seed oil source for biodiesel

    Get PDF
    An efficient, highly reproducible protocol for multiple shoot induction and plant regeneration of Pongamia pinnata has been successfully developed using cotyledonary node explants. This study also demonstrates that preconditioning of explant stimulates production of multiple shoots from cotyledonary nodes of P. pinnata. The highest direct shoot regeneration (90%) with an average of 18.4 ± 3.1 shoots/explant were obtained when cotyledonary node explants were excised from seedlings germinated on Murashige and Skoog (MS) media supplemented with benzyladenine (BA) 1 mg l-1, and subsequently cultured on MS media with 1 mgl-1 thidiazuron (TDZ). Scanning electron microscope observations of cotyledonary node (CN) explants excised from pre-conditioned and normal seedlings, revealed larger buds with rapid development in BA-preconditioned CN explants. The addition of adenine sulphate significantly increased the average number of shoots per explant. The highest direct shoot regeneration (93%) with an average of 32.2 ± 0.93 shoots/explant was obtained from BA-preconditioned CN when cultured on MS media supplemented with 1 mg l-1 TDZ and 200 mg l-1 adenine sulphate (ADS). Repeated shoot proliferation was observed from BA preconditioned CN explants up to 3 cycles with an average of 15 shoots/explant/cycle when cultured on MS media supplemented with 1 mg l-1 TDZ and 150 mg l-1 L-glutamine, thus producing 45 shoots/CN explant. Shoots were elongated on hormone free MS media and rooted on 1/2 MS media supplemented with 1 mg l-1 of IBA. Rooted shoots were successfully acclimatized and established in soil with 80% success. The highly regenerative system developed in this investigation for this important tree could be a useful tool for genetic transformation

    MOESM11 of Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos

    No full text
    Additional file 11: Table S7. Effect of l-cysteine and ascorbic acid on post bombardment recovery of DEC tissues and GUS gene expression

    Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New Transformed Land Plant Containing Long-Chain Omega-3 Oils

    No full text
    New and sustainable sources of long-chain (LC, ≥C20) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C16–C22 fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols

    Metabolic engineering plant seeds with fish oil-like levels of DHA.

    Get PDF
    BACKGROUND: Omega-3 long-chain (≥C(20)) polyunsaturated fatty acids (ω3 LC-PUFA) have critical roles in human health and development with studies indicating that deficiencies in these fatty acids can increase the risk or severity of cardiovascular and inflammatory diseases in particular. These fatty acids are predominantly sourced from fish and algal oils, but it is widely recognised that there is an urgent need for an alternative and sustainable source of EPA and DHA. Since the earliest demonstrations of ω3 LC-PUFA engineering there has been good progress in engineering the C(20) EPA with seed fatty acid levels similar to that observed in bulk fish oil (∼18%), although undesirable ω6 PUFA levels have also remained high. METHODOLOGY/PRINCIPAL FINDINGS: The transgenic seed production of the particularly important C(22) DHA has been problematic with many attempts resulting in the accumulation of EPA/DPA, but only a few percent of DHA. This study describes the production of up to 15% of the C(22) fatty acid DHA in Arabidopsis thaliana seed oil with a high ω3/ω6 ratio. This was achieved using a transgenic pathway to increase the C(18) ALA which was then converted to DHA by a microalgal Δ6-desaturase pathway. CONCLUSIONS/SIGNIFICANCE: The amount of DHA described in this study exceeds the 12% level at which DHA is generally found in bulk fish oil. This is a breakthrough in the development of sustainable alternative sources of DHA as this technology should be applicable in oilseed crops. One hectare of a Brassica napus crop containing 12% DHA in seed oil would produce as much DHA as approximately 10,000 fish
    corecore