5 research outputs found

    The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high‐speed stream‐driven storms

    Full text link
    The outer proton radiation belt (OPRB) and outer electron radiation belt (OERB) at geosynchronous orbit are investigated using a reanalysis of the LANL CPA (Charged Particle Analyzer) 8‐satellite 2‐solar cycle energetic particle data set from 1976 to 1995. Statistics of the OPRB and the OERB are calculated, including local time and solar cycle trends. The number density of the OPRB is about 10 times higher than the OERB, but the 1 MeV proton flux is about 1000 times less than the 1 MeV electron flux because the proton energy spectrum is softer than the electron spectrum. Using a collection of 94 high‐speed stream‐driven storms in 1976–1995, the storm time evolutions of the OPRB and OERB are studied via superposed epoch analysis. The evolution of the OERB shows the familiar sequence (1) prestorm decay of density and flux, (2) early‐storm dropout of density and flux, (3) sudden recovery of density, and (4) steady storm time heating to high fluxes. The evolution of the OPRB shows a sudden enhancement of density and flux early in the storm. The absence of a proton dropout when there is an electron dropout is noted. The sudden recovery of the density of the OERB and the sudden density enhancement of the OPRB are both associated with the occurrence of a substorm during the early stage of the storm when the superdense plasma sheet produces a “strong stretching phase” of the storm. These storm time substorms are seen to inject electrons to 1 MeV and protons to beyond 1 MeV into geosynchronous orbit, directly producing a suddenly enhanced radiation belt population.Key PointsDuring high‐speed stream‐driven storms, the electron and proton radiation belts are directly enhanced by a single substormThe enhancing substorm occurs during the “strong stretching” phase of the storm caused by the superdense plasma sheetProton and electron injection to 1 MeV is seen for these strong stretching phase substormsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133567/1/jgra52702.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133567/2/jgra52702_am.pd

    Binary systems and their nuclear explosions

    Get PDF
    Peer ReviewedPreprin

    Coordinated ground-based and geosynchronous satellite-based measurements of auroral pulsations

    No full text
    We describe a technique that uses a ground-based all-sky video camera and geosynchronous satellite-based plasma and energetic particle detectors to study ionosphere-magnetosphere coupling as it relates to the aurora. The video camera system was deployed in Eagle, Alaska for a seven month period at the foot of the magnetic field line that threads geosynchronous satellite 1989-046. Since 1989-046 corotates with the earth, its footprint remains nearly fixed in the vicinity of Eagle, allowing for routine continuous monitoring of an auroral field line at its intersections with the ground and with geosynchronous orbit. As an example of the utility of this technique, we present coordinated ground-based and satellite based observations during periods of auroral pulsations and compare this data to the predictions of both the relaxation oscillator theory and flow cyclotron maser theory for the generation of pulsating aurorae. The observed plasma and energetic particle characteristics at geosynchronous orbit during pulsating aurorae displays are found to be in agreement with the predictions of both theories lending further support that a cyclotron resonance mechanism is responsible for auroral pulsations
    corecore