270 research outputs found

    A matched expansion approach to practical self-force calculations

    Full text link
    We discuss a practical method to compute the self-force on a particle moving through a curved spacetime. This method involves two expansions to calculate the self-force, one arising from the particle's immediate past and the other from the more distant past. The expansion in the immediate past is a covariant Taylor series and can be carried out for all geometries. The more distant expansion is a mode sum, and may be carried out in those cases where the wave equation for the field mediating the self-force admits a mode expansion of the solution. In particular, this method can be used to calculate the gravitational self-force for a particle of mass mu orbiting a black hole of mass M to order mu^2, provided mu/M << 1. We discuss how to use these two expansions to construct a full self-force, and in particular investigate criteria for matching the two expansions. As with all methods of computing self-forces for particles moving in black hole spacetimes, one encounters considerable technical difficulty in applying this method; nevertheless, it appears that the convergence of each series is good enough that a practical implementation may be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue of Classical and Quantum Gravit

    Shorter Exciton Lifetimes via an External Heavy-Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Light-Emitting Diodes

    Get PDF
    Multiexcited‐state phenomena are believed to be the root cause of two exigent challenges in organic light‐emitting diodes; namely, efficiency roll‐off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed‐fluorescence‐emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy‐atom effect of brominated host molecules leads to increased spin–orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll‐off at high excitation densities. Efficient organic light‐emitting diodes with better roll‐off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real‐world applications.United States. Department of Energy (Grant DE‐FG02‐07ER46474

    OpenVirtualObjects: An open set of standardized and validated 3D household objects for virtual reality-based research, assessment, and therapy

    Get PDF
    Virtual reality (VR) technology provides clinicians, therapists, and researchers with new opportunities to observe, assess, and train behavior in realistic yet well-controlled environments. However, VR also comes with a number of challenges. For example, compared to more abstract experiments and tests on 2D computer screens, VR-based tasks are more complex to create, which can make it more expensive and time-consuming. One way to overcome these challenges is to create, standardize, and validate VR content and to make it openly available for researchers and clinicians. Here we introduce the OpenVirtualObjects (OVO), a set of 124 realistic 3D household objects that people encounter and use in their everyday lives. The objects were rated by 34 younger and 25 older adults for recognizability, familiarity, details (i.e., visual complexity), contact, and usage (i.e., frequency of usage in daily life). All participants also named and categorized the objects. We provide the data and the experiment- and analysis code online. With OVO, we hope to facilitate VR-based research and clinical applications. Easy and free availability of standardized and validated 3D objects can support systematic VR-based studies and the development of VR-based diagnostics and therapeutic tools

    OpenVirtualObjects (OVO): An open set of standardized and validated 3D household objects for virtual reality-based research, assessment, and therapy

    Get PDF
    Virtual reality (VR) technology provides clinicians, therapists, and researchers with new opportunities to observe, assess, and train behaviour in realistic yet well-controlled environments. However, VR also comes with a number of challenges. For example, compared to more abstract experiments and tests on 2D computer screens, VR-based tasks are more complex to create, which can make it more expensive and time-consuming. One way to overcome these challenges is to create, standardize, and validate VR content and to make it openly available for researchers and clinicians. Here we introduce the OpenVirtualObjects (OVO), a set of 124 realistic 3D household objects that people encounter and use in their everyday lives. The objects were rated by 34 younger and 25 older adults for recognizability, familiarity, details (i.e., visual complexity), contact, and usage (i.e., frequency of usage in daily life). All participants also named and categorized the objects. We provide the data and the experiment- and analysis code online. With OVO, we hope to facilitate VR-based research and clinical applications. Easy and free availability of standardized and validated 3D objects can support systematic VR-based studies and the development of VR-based diagnostics and therapeutic tools

    Neural Correlates of Automatic and Controlled Auditory Processing in Schizophrenia

    Get PDF
    Individuals with schizophrenia demonstrate impairments in selective attention and sensory processing. The authors assessed differences in brain function between 26 participants with schizophrenia and 17 comparison subjects engaged in automatic (unattended) and controlled (attended) auditory information processing using event-related functional MRI. Lower regional neural activation during automatic auditory processing in the schizophrenia group was not confined to just the temporal lobe, but also extended to prefrontal regions. Controlled auditory processing was associated with a distributed frontotemporal and subcortical dysfunction. Differences in activation between these two modes of auditory information processing were more pronounced in the comparison group than in the patient group

    Functional magnetic resonance imaging measure of automatic and controlled auditory processing

    Get PDF
    Activity within fronto-striato-temporal regions during processing of unattended auditory deviant tones and an auditory target detection task was investigated using event-related functional magnetic resonance imaging. Activation within the middle frontal gyrus, inferior frontal gyrus, anterior cingulate gyrus, superior temporal gyrus, thalamus, and basal ganglia were analyzed for differences in activity patterns between the two stimulus conditions. Unattended deviant tones elicited robust activation in the superior temporal gyrus; by contrast, attended tones evoked stronger superior temporal gyrus activation and greater frontal and striatal activation. The results suggest that attention enhances neural activation evoked by auditory pitch deviance in auditory brain regions, possibly through top-down control from the dorsolateral prefrontal cortex involved in goal-directed selection and response generation

    Impaired neural synchrony in the theta frequency range in adolescents at familial risk for schizophrenia

    Get PDF
    Puberty is a critical period for the maturation of the fronto-limbic and fronto-striate brain circuits responsible for executive function and affective processing. Puberty also coincides with the emergence of the prodromal signs of schizophrenia, which may indicate an association between these two processes.Time-domain analysis and wavelet based time-frequency analysis was performed on electroencephalographic (EEG) data of 30 healthy control (HC) subjects and 24 individuals at familial risk(FR) for schizophrenia. All participants were between the ages of 13 and 18 years and were carefully matched for age, gender, ethnicity, education, andTanner Stage. Electrophysiological recordings were obtained from 32 EEG channels while participants performed a visual oddball task, where they identified rare visual targets among standard "scrambled" images and rare aversive and neutral dis-tracter pictures. The time-domain analysis showed that during target processing the FR group showed smaller event-related potentials in the P2 and P3 range as compared to the HC group. In addition, EEG activity in the theta (4-8 Hz) frequency range was significantly reduced during target processing in the FR group. Inefficient cortical information processing during puberty may be an early indicator of altered brain function in adolescents at FR for schizophrenia and may represent a vulnerability marker for illness onset. Longitudinal assessments will have to determine their predictive value for illness onset in populations at FR for psychotic illness
    • 

    corecore