14 research outputs found

    Transferability of the PRS estimates for height and BMI obtained from the European ethnic groups to the Western Russian populations

    Get PDF
    Genetic data plays an increasingly important role in modern medicine. Decrease in the cost of sequencing with subsequent increase in imputation accuracy, and the accumulation of large amounts of high-quality genetic data enable the creation of polygenic risk scores (PRSs) to perform genotype–phenotype associations. The accuracy of phenotype prediction primarily depends on the overall trait heritability, Genome-wide association studies cohort size, and the similarity of genetic background between the base and the target cohort. Here we utilized 8,664 high coverage genomic samples collected across Russia by β€œEvogen”, a Russian biomedical company, to evaluate the predictive power of PRSs based on summary statistics established on cohorts of European ancestry for basic phenotypic traits, namely height and BMI. We have demonstrated that the PRSs calculated for selected traits in three distinct Russian populations, recapitulate the predictive power from the original studies. This is evidence that GWAS summary statistics calculated on cohorts of European ancestry are transferable onto at least some ethnic groups in Russia

    ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ диагностики наслСдствСнных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… синдромов с Π½Π΅Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΌ проявлСниСм: клиничСскиС случаи

    Get PDF
    Background: Germinal pathogenic variants are the cause of the development of hereditary cancer syndromes (HCS). Various genetic tests are used for HCS detect, from the Β«frequentΒ» mutations of one or several genes analysis to the full-length gene sequence, next-generation sequencing (NGS) based panel, whole exome (WES) or whole genome sequencing (WGS).There are some HCS cases with atypical clinical manifestations and the family history does not allow one to suspect a specific HCS and limit oneself to the study of only one or a few genes. Conducting research using NGS to assess the selected sample of cancer patient’s genetic characteristics has revealed atypical HCS cases.Aim: To present the WGS diagnosis results for two atypical hereditary tumor syndromes cases.Materials and methods: DNA isolation was performed using Qiagen DNA Isolation kit.WGS for all samples was performed at DNBSEQ-T7 (MGI) and DNBSEQ-G400 (MGI) sequencing platforms using PCR-free protocol with average sample coverage 30x. A standard bioinformatics analysis pipeline was implemented for all the samples data processing.Potential clinically relevant variants were validated using Sanger sequencing. For all patients was received signed a written consent.Results: In the first case report, a pathogenic variant in the TP53 gene was identified: c. 637C > T, p. Arg213Ter, rs397516436, and Liβ€Šβ€“β€ŠFraumeni syndrome was confirmed. In the second case, we detected two pathogenic variants carrier β€” BRCA2: c. 6644_6647del, p. Tyr2215SerfsTer13, rs80359616 and MSH2: c. 1906G > C, p. Ala636Pro, rs63750875 associated with hereditary breast and ovarian cancer and hereditary colorectal cancer (Lynch syndrome).Conclusion: NGS, including WGS makes it easier to identify all clinically significant germline variants associated with hereditary cancer syndromes in cancer patients, as well as to trace their segregation in relatives.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ: Π“Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ развития наслСдствСнных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… синдромов (НОБ). Для выявлСния НОБ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹, ΠΎΡ‚ Π°Π½Π°Π»ΠΈΠ·Π° «частых» ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π³Π΅Π½ΠΎΠ² Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ сСквСнирования ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π°, ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠ³Π΅Π½Π½ΠΎΠΉ ΠΏΠ°Π½Π΅Π»ΠΈ, полноэкзомного ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования. Иногда Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ случаи с Π½Π΅Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΌ клиничСским проявлСниСм, Π° сСмСйный Π°Π½Π°ΠΌΠ½Π΅Π· Π½Π΅ позволяСт своСврСмСнно Π·Π°ΠΏΠΎΠ΄ΠΎΠ·Ρ€ΠΈΡ‚ΡŒ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹ΠΉ НОБ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° ΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΡ‚ΡŒΡΡ исслСдованиСм ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π³Π΅Π½ΠΎΠ². НаучныС ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Ρ‹ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ‹ΡΠΎΠΊΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сСквСнирования для ΠΎΡ†Π΅Π½ΠΊΠΈ гСнСтичСских особСнностСй ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ онкологичСских ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π½Π΅Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Π΅ случаи НОБ.ЦСль исслСдования: ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ клиничСскоС описаниС ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ молСкулярно-гСнСтичСской диагностики Π΄Π²ΡƒΡ… Π½Π΅Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Ρ… клиничСских случаСв НОБ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ молСкулярной диагностики гСнСтичСских ΠΏΡ€ΠΈΡ‡ΠΈΠ½, приводящих ΠΊ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ НОБ, Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π΄Π²ΡƒΡ… клиничСских случаСв. ПолногСномноС сСквСнированиС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ с использованиСм Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ² ΠΈ оборудования производства MGI (ΠšΠΈΡ‚Π°ΠΉ). Валидация клиничСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° сСквСнированиСм ΠΏΠΎ БэнгСру.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: Π’ ΠΏΠ΅Ρ€Π²ΠΎΠΌ клиничСском случаС выявлСн ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π² Π³Π΅Π½Π΅ TP53: c. 637C > T, p. Arg213Ter, rs397516436, ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ синдром Π›ΠΈ – Π€Ρ€Π°ΡƒΠΌΠ΅Π½ΠΈ. Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ случаС Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° выявлСно Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π΄Π²ΡƒΡ… ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² β€” BRCA2: c. 6644_6647del, p. Tyr2215SerfsTer13, rs80359616 ΠΈ MSH2: c. 1906G > C, p. Ala636Pro, rs63750875, ассоциированных с Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ наслСдствСнного Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΈ яичника ΠΈ наслСдствСнного ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° (синдром Π›ΠΈΠ½Ρ‡Π°).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: ИспользованиС Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² гСнСтичСского тСстирования, Π² Ρ‚ΠΎΠΌ числС ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования позволяСт Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ всС клиничСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ Π³Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, ассоциированныС с НОБ, Ρƒ онкологичСских ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΡΠ»Π΅Π΄ΠΈΡ‚ΡŒ ΠΈΡ… ΡΠ΅Π³Ρ€Π΅Π³Π°Ρ†ΠΈΡŽ Ρƒ родствСнников

    Human gut microbiota community structures in urban and rural populations in Russia

    Get PDF
    The microbial community of the human gut has a crucial role in sustaining host homeostasis. High-throughput DNA sequencing has delineated the structural and functional configurations of gut metagenomes in world populations. The microbiota of the Russian population is of particular interest to researchers, because Russia encompasses a uniquely wide range of environmental conditions and ethnogeographical cohorts. Here we conduct a shotgun metagenomic analysis of gut microbiota samples from 96 healthy Russian adult subjects, which reveals novel microbial community structures. The communities from several rural regions display similarities within each region and are dominated by the bacterial taxa associated with the healthy gut. Functional analysis shows that the metabolic pathways exhibiting differential abundance in the novel types are primarily associated with the trade-off between the Bacteroidetes and Firmicutes phyla. The specific signatures of the Russian gut microbiota are likely linked to the host diet, cultural habits and socioeconomic status. Β© 2013 Macmillan Publishers Limited. All rights reserved

    ЗлокачСствСнноС Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Π² составС синдрома ΠšΠΎΡƒΠ΄Π΅Π½Π°

    Get PDF
    Cowden syndrome is a rare disease characterized by multiple hamartomas and increased breast, thyroid, kidney and uterine neoplasm risk. The lifetime breast cancer risk for patients with Cowden syndrome is 85β€Š%, with an average age of diagnosis between 38 and 46 years. The diagnostic criteria for Cowden syndrome have been established by the International Cowden Consortium (ICC) and the National Comprehensive Cancer Network (NCCN), and are regularly revised, but the diagnosis of Cowden syndrome remains difficult due to the variety of phenotypic and clinical features of the disease. At the same time, the genetic variants associated with Cowden syndrome analysis is not a standard for patients with breast cancer.Objective: To demonstrate the non‑BRCA hereditary breast cancer detection using whole genome sequencing on the Cowden syndrome clinical case example.Materials and methods: The article describes a clinical case of a 37‑year‑old female patient with breast cancer, normal intelligence and phenotype, structural abnormalities of the thyroid gland (multinodular goiter). Whole genome sequencing was used to identify clinically significant genetic variants associated with hereditary tumor syndromes.Clinical case: The article presents a brief literature review on the clinical presentation of Cowden syndrome and indications for its molecular diagnosis. Also, the presented clinical case describes patient R., 37 years old female with breast cancer, who underwent treatment in the City Clinical Oncological Hospital № 1 of the Moscow City Health Department in 2021. The patient was fully examined and enrolled in the whole genome sequencing project under the Order β„– 69 of Moscow Healthcare Department dated February 1, 2021 Β«Oncogenetic research organization in MoscowΒ». The results revealed a pathogenic variant in the PTEN gene, previously associated with Cowden syndrome.Conclusion: The use of whole genome sequencing allows to identify hereditary tumor syndromes, the clinical manifestation of which may be breast cancer.Π‘ΠΈΠ½Π΄Ρ€ΠΎΠΌ ΠšΠΎΡƒΠ΄Π΅Π½Π° характСризуСтся Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ мноТСствСнных Π³Π°ΠΌΠ°Ρ€Ρ‚ΠΎΠΌ с высоким риском развития доброкачСствСнных ΠΈ злокачСствСнных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Ρ‰ΠΈΡ‚ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, ΠΏΠΎΡ‡Π΅ΠΊ ΠΈ эндомСтрия. Риск развития Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с синдромом ΠšΠΎΡƒΠ΄Π΅Π½Π° Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΆΠΈΠ·Π½ΠΈ составляСт 85 %, ΠΏΡ€ΠΈ этом срСдний возраст постановки Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° составляСт ΠΎΡ‚ 38 Π΄ΠΎ 46 Π»Π΅Ρ‚. ДиагностичСскиС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ синдрома ΠšΠΎΡƒΠ΄Π΅Π½Π° установлСны ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹ΠΌ консорциумом ΠΏΠΎ синдрому ΠšΠΎΡƒΠ΄Π΅Π½Π° (ICC) ΠΈ АмСриканской ассоциациСй ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΎΠ² (NCCN) ΠΈ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ΡΡ рСгулярному пСрСсмотру, ΠΎΠ΄Π½Π°ΠΊΠΎ диагностика синдрома ΠšΠΎΡƒΠ΄Π΅Π½Π° по‑прСТнСму Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½Π΅Π½Π° Π²Π²ΠΈΠ΄Ρƒ разнообразия фСнотипичСских особСнностСй ΠΈ клиничСских ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя, Π°Π½Π°Π»ΠΈΠ· гСнСтичСских Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ², ассоциированных с синдромом ΠšΠΎΡƒΠ΄Π΅Π½Π°, Π½Π΅ являСтся стандартом обслСдования ΠΏΡ€ΠΈ диагностикС Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹.ЦСль: ΠΏΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ выявлСниС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования наслСдствСнных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… синдромов, клиничСским проявлСниСм ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ злокачСствСнныС новообразования ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹, Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ синдрома ΠšΠΎΡƒΠ΄Π΅Π½Π°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ описан клиничСский случай ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΊΠΈ 37 Π»Π΅Ρ‚ с Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΠΎΠΌ ΠΈ Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠΌ, структурными пораТСниями Ρ‰ΠΈΡ‚ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ (ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ·Π»ΠΎΠ²ΠΎΠΉ Π·ΠΎΠ±), ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠ²ΡˆΠ΅ΠΉΡΡ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ исслСдования с Ρ†Π΅Π»ΡŒΡŽ выявлСния клиничСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… гСнСтичСских Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ², ассоциированных с наслСдствСнными ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹ΠΌΠΈ синдромами, ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования.ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ случай: Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн ΠΊΡ€Π°Ρ‚ΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, посвящСнный клиничСской характСристикС синдрома ΠšΠΎΡƒΠ΄Π΅Π½Π°, ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ для молСкулярной диагностики. Описан клиничСский случай ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΊΠΈ Π ., 37 Π»Π΅Ρ‚, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠ»Π° Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π² Π“Π‘Π£Π— «Городская клиничСская онкологичСская Π±ΠΎΠ»ΡŒΠ½ΠΈΡ†Π° β„– 1 Π”Π—ΠœΒ» Π² 2021 Π³. ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ Ρ€Π°ΠΊΠ° ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹. Π‘ ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ диагностированного Π² возрастС Π΄ΠΎ 50 Π»Π΅Ρ‚ злокачСствСнного новообразования ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΊΠ° Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π° Π² Π½Π°ΡƒΡ‡Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ ΠΏΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½Ρ‹Ρ… исслСдований Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΏΡ€ΠΈΠΊΠ°Π·Π° Π”Π΅ΠΏΠ°Ρ€Ρ‚Π°ΠΌΠ΅Π½Ρ‚Π° ЗдравоохранСния Π³. ΠœΠΎΡΠΊΠ²Ρ‹ β„– 69 ΠΎΡ‚ 01.02.2021 «Об ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ провСдСния онкогСнСтичСских исслСдований Π² Π³ΠΎΡ€ΠΎΠ΄Π΅ МосквС», ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ гСнСтичСского исслСдования выявлСн ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π³Π΅Π½Π° PTEN, ассоциированный с синдромом ΠšΠΎΡƒΠ΄Π΅Π½Π°.Π’Ρ‹Π²ΠΎΠ΄: ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³Π΅Π½ΠΎΠΌΠ½ΠΎΠ³ΠΎ сСквСнирования позволяСт Π²Ρ‹ΡΠ²Π»ΡΡ‚ΡŒ наслСдствСнныС ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ синдромы, клиничСским проявлСниСм ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ злокачСствСнныС новообразования ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹

    Genomic and phenotypic analysis of siderophore-producing Rhodococcus qingshengii strain S10 isolated from an arid weathered serpentine rock environment

    No full text
    Β© 2020, Springer-Verlag GmbH Germany, part of Springer Nature. The success of members of the genus Rhodococcus in colonizing arid rocky environments is owed in part to desiccation tolerance and an ability to extract iron through the secretion and uptake of siderophores. Here, we report a comprehensive genomic and taxonomic analysis of Rhodococcus qingshengii strain S10 isolated from eathered serpentine rock at the arid Khalilovsky massif, Russia. Sequence comparisons of whole genomes and of selected marker genes clearly showed strain S10 to belong to the R. qingshengii species. Four prophage sequences within the R. qingshengii S10 genome were identified, one of which encodes for a putative siderophore-interacting protein. Among the ten non-ribosomal peptides synthase (NRPS) clusters identified in the strain S10 genome, two show high homology to those responsible for siderophore synthesis. Phenotypic analyses demonstrated that R. qingshengii S10 secretes siderophores and possesses adaptive features (tolerance ofΒ up to 8% NaClΒ and pH 9) that should enable survival in its native habitat within dry serpentine rock

    An allelic variant of congenital Salih myopathy

    No full text
    The paper describes the steps and problems of diagnosing congenital myopathy with early respiratory disorders. While differentiallyΒ diagnosing, the authors consider congenital myopathies, in which early cardiac involvement is encountered. Since the course of theΒ disease in an observed female patient differed from that of such nosological entities and appeared as not only muscle weakness, butΒ also as early respiratory disorders, we could not identify what nosological entity the disease belonged to in view of its clinical presentationΒ and the results of muscle histological examination and we decided to perform exome sequencing. Molecular genetic testing couldΒ find heterozygous mutations in the titin (TTN) gene. The findings are suggestive of congenital proximal myopathy with early respiratoryΒ failure, which is an allelic variant of Salih myopathy. This case is the first and so far only description of this disease in Russia

    Aicardi–Goutieres syndrome in children with idiopathic epilepsy

    No full text
    This article describes 9 clinical cases of Aicardi–GoutiΓ¨res syndrome (AGS) in children admitted to the hospital of the Scientific and Practical Center of Medical Care for Children with Resistant Multifocal Epilepsy. Epilepsy, psychomotor retardation, and a loss of previously acquired skills were diagnosed during the investigation. Targeted exome sequencing in one child revealed a mutation in the RNASEH2B gene responsible for the development of this disease. AGS is an early-onset progressive encephalopathy with basal ganglia calcification, leukodystrophy, lymphocytosis, elevated interferon-alfa levels in the cerebrospinal fluid, and no evidence of viral infection. Noninfectious leukoencephalopathy concurrent with multifocal epilepsy in early childhood suggest that the syndrome is an inherited disease

    Identification, Expression Analysis, and Target Prediction of Flax Genotroph MicroRNAs Under Normal and Nutrient Stress Conditions

    Get PDF
    Cultivated flax (Linum usitatissimum L.) is an important plant valuable for industry. Some flax lines can undergo heritable phenotypic and genotypic changes (LIS-1 insertion being the most common) in response to nutrient stress and are called plastic lines. Offspring of plastic lines, which stably inherit the changes, are called genotrophs. MicroRNAs (miRNAs) are involved in a crucial regulatory mechanism of gene expression. They have previously been assumed to take part in nutrient stress response and can, therefore, participate in genotroph formation. In the present study, we performed high-throughput sequencing of small RNAs extracted from flax plants grown under normal, phosphate deficient and nutrient excess conditions to identify miRNAs and evaluate their expression. Our analysis revealed expression of 96 conserved miRNAs from 21 families in flax. Moreover, 475 novel potential miRNAs were identified for the first time, and their targets were predicted. However, none of the identified miRNAs were transcribed from LIS-1. Expression of 7 miRNAs (miR168, miR169, miR395, miR398, miR399, miR408, and lus-miR-N1) with up- or down-regulation under nutrient stress (on the basis of high-throughput sequencing data) was evaluated on extended sampling using qPCR. Reference gene search identified ETIF3H and ETIF3E genes as most suitable for this purpose. Down-regulation of novel potential lus-miR-N1 and up-regulation of conserved miR399 were revealed under the phosphate deficient conditions. In addition, the negative correlation of expression of lus-miR-N1 and its predicted target, ubiquitin-activating enzyme E1 gene, as well as, miR399 and its predicted target, ubiquitin-conjugating enzyme E2 gene, was observed. Thus, in our study, miRNAs expressed in flax plastic lines and genotrophs were identified and their expression and expression of their targets was evaluated using high-throughput sequencing and qPCR for the first time. These data provide new insights into nutrient stress response regulation in plastic flax cultivars

    Human gut microbiota community structures in urban and rural populations in Russia

    No full text
    The microbial community of the human gut has a crucial role in sustaining host homeostasis. High-throughput DNA sequencing has delineated the structural and functional configurations of gut metagenomes in world populations. The microbiota of the Russian population is of particular interest to researchers, because Russia encompasses a uniquely wide range of environmental conditions and ethnogeographical cohorts. Here we conduct a shotgun metagenomic analysis of gut microbiota samples from 96 healthy Russian adult subjects, which reveals novel microbial community structures. The communities from several rural regions display similarities within each region and are dominated by the bacterial taxa associated with the healthy gut. Functional analysis shows that the metabolic pathways exhibiting differential abundance in the novel types are primarily associated with the trade-off between the Bacteroidetes and Firmicutes phyla. The specific signatures of the Russian gut microbiota are likely linked to the host diet, cultural habits and socioeconomic status. Β© 2013 Macmillan Publishers Limited. All rights reserved
    corecore