218 research outputs found

    Fracture toughness of AlSi10Mg alloy produced by direct energy deposition with different crack plane orientations

    Get PDF
    The fracture and tensile behaviors of the AlSi10Mg alloy processed by Direct Energy Deposition were investigated. Three-point bending fracture toughness and tensile specimens were tested at room temperature along different crack plane orientations and loading directions. Before being machined and tested, the printed samples were subjected to heat treatment at 300 °C for 2 h to relieve the residual stresses. Microstructural and fractographic analyses were performed to investigate the fracture mechanisms and the crack propagation paths for each crack orientation. Significant differences in the fracture toughness were observed among the crack plane orientations. Specimens with cracks oriented in the X-Y direction featured the highest fracture toughness values (JIc = 11.96 kJ/m2), whereas the Z-Y crack orientation (perpendicular to the printing direction) performed the lowest fracture toughness values (JIc = 8.91 kJ/m2). The anisotropy in fracture toughness is mainly related to a preferential crack propagation path along the melt pool boundaries. At melt pool boundaries, pores are preferentially placed, coarsening of the microstructure occurs and there is higher Si content, leading to that area being less ductile and less resistant to crack propagation

    Photo-antagonism of the GABAA receptor

    Get PDF
    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation

    Geochemical, sedimentological and microbial diversity in two thermokarst lakes of far Eastern Siberia

    Get PDF
    Thermokarst lakes are important conduits for organic carbon sequestration, soil organic matter (soil-OM) decomposition and release of atmospheric greenhouse gases in the Arctic. They can be classified as either floating-ice lakes, which sustain a zone of unfrozen sediment (talik) at the lakebed year-round, or as bedfast-ice lakes, which freeze all the way to the lakebed in winter. Another key characteristic of thermokarst lakes are their eroding shorelines, depending on the surrounding landscape, they can play a major role in supplying the lakebeds with sediment and OM. These differences in winter ice regime and eroding shorelines are key factors which determine the quantity and quality of OM in thermokarst lake sediments. We used an array of physical, geochemical, and microbiological tools to identify the differences in the environmental conditions, sedimentary characteristics, carbon stocks and microbial community compositions in the sediments of a bedfast-ice and a floating-ice lake in Far East Siberia with different eroding shorelines. Our data show strong differences across most of the measured parameters between the two lakes. For example, the floating-ice lake contains considerably lower amounts of sediment organic matter and dissolved organic carbon, both of which also appear to be more degraded in comparison to the bedfast-ice lake, based on their stable carbon isotope composition (δ13C). We also document clear differences in the microbial community composition, for both archaea and bacteria. We identified the lake water depth (bedfast-ice vs. floating-ice) and shoreline erosion to be the two most likely main drivers of the sedimentary, microbial and biogeochemical diversity in thermokarst lakes. With ongoing climate warming, it is likely that an increasing number of lakes will shift from a bedfast- to a floating-ice state, and that increasing levels of shoreline erosion will supply the lakes with sediments. Yet, still little is known about the physical, biogeochemical and microbial differences in the sediments of these lake types and how different eroding shorelines impact these lake system

    Antagonism of neurosteroid modulation of native gamma-aminobutyric acid receptors by (3alpha,5alpha)-17-phenylandrost-16-en-3-ol.

    Get PDF
    Endogenous pregnane neurosteroids are allosteric modulators at ?-aminobutyric acid type-A (GABAA) receptors at nanomolar concentrations. There is direct evidence for multiple distinct neurosteroid binding sites on GABAA receptors, dependent upon subunit composition and stoichiometry. This view is supported by the biphasic kinetics of various neuroactive steroids, enantioselectivity of some neurosteroids, selective mutation studies of recombinantly expressed receptors and the selectivity of the neurosteroid antagonist (3?,5?)-17-phenylandrost-16-en-3-ol (17PA) on 5?-pregnane steroid effects on recombinant GABAA receptors expressed in Xenopus oocytes and native receptors in dissociated neurons. However, it is unclear whether this antagonist action is present in a mature mammalian system. The present study evaluated the antagonist activity of 17PA on neurosteroid agonists both in vivo and in vitro by examining the effects of 17PA on 5?-pregnane-induced sedation in rats, native mature GABAA receptor ion channels utilizing the chloride flux assay and further studies in recombinant ?1?2?2 receptors. The data show that 17PA preferentially inhibits 3?,5?-THP vs. alphaxalone in vivo, preferentially inhibits 3?,5?-THDOC vs. alphaxalone potentiation of GABA-mediated Cl? uptake in adult cerebral cortical synaptoneurosomes, but shows no specificity for 3?,5?-THDOC vs. alphaxalone in recombinant ?1?2?2 receptors. These data provide further evidence of the specificity of 17PA and the heterogeneity of neurosteroid recognition sites on GABAA receptors in the CNS

    Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one) promotes neural progenitor proliferation <it>in vitro </it>in cultures of rodent hippocampal and human cortical neural progenitors, and <it>in vivo </it>in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation.</p> <p>Methods</p> <p>In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging.</p> <p>Results</p> <p>Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC<sub>50 </sub>of 110 ± 15 nM and a maximal response occurring at three days <it>in vitro</it>. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La<sup>3+</sup>, or the L-type calcium channel blocker nifedipine. Furthermore, the GABA<sub>A </sub>receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise.</p> <p>Conclusion</p> <p>Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABA<sub>A </sub>receptor and L-type calcium channel. These data suggest that APα-induced intracellular calcium concentration increase serves as the initiation mechanism whereby APα promotes neurogenesis.</p

    GABA-Independent GABAA Receptor Openings Maintain Tonic Currents

    Get PDF
    Activation of GABA(A) receptors (GABA(A)Rs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABA(A)Rs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABA(A)Rs which can detect extracellular GABA. Such tonic GABA(A)R-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABA(A) receptor openings. This tonic GABA(A)R conductance is resistant to the competitive GABA(A)R antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABA(A)Rs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations

    Mapping the contribution of β3-containing GABA(A )receptors to volatile and intravenous general anesthetic actions

    Get PDF
    BACKGROUND: Agents belonging to diverse chemical classes are used clinically as general anesthetics. The molecular targets mediating their actions are however still only poorly defined. Both chemical diversity and substantial differences in the clinical actions of general anesthetics suggest that general anesthetic agents may have distinct pharmacological targets. It was demonstrated previously that the immobilizing action of etomidate and propofol is completely, and the immobilizing action of isoflurane partly mediated, by β3-containing GABA(A )receptors. This was determined by using the β3(N265M) mice, which carry a point mutation known to decrease the actions of general anesthetics at recombinant GABA(A )receptors. In this communication, we analyzed the contribution of β3-containing GABA(A )receptors to the pharmacological actions of isoflurane, etomidate and propofol by means of β3(N265M) mice. RESULTS: Isoflurane decreased core body temperature and heart rate to a smaller degree in β3(N265M) mice than in wild type mice, indicating a minor but significant role of β3-containing GABA(A )receptors in these actions. Prolonged time intervals in the ECG and increased heart rate variability were indistinguishable between genotypes, suggesting no involvement of β3-containing GABA(A )receptors. The anterograde amnesic action of propofol was indistinguishable in β3(N265M) and wild type mice, suggesting that it is independent of β3-containing GABA(A )receptors. The increase of heart rate variability and prolongation of ECG intervals by etomidate and propofol were also less pronounced in β3(N265M) mice than in wild type mice, pointing to a limited involvement of β3-containing GABA(A )receptors in these actions. The lack of etomidate- and propofol-induced immobilization in β3(N265M) mice was also observed in congenic 129X1/SvJ and C57BL/6J backgrounds, indicating that this phenotype is stable across different backgrounds. CONCLUSION: Our results provide evidence for a defined role of β3-containing GABA(A )receptors in mediating some, but not all, of the actions of general anesthetics, and confirm the multisite model of general anesthetic action. This pharmacological separation of anesthetic endpoints also suggests that subtype-selective substances with an improved side-effect profile may be developed

    GABAA receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation

    Get PDF
    PurposeThe purpose of this review is to summarize current knowledge of detailed biochemical evidence for the role of γ-aminobutyric acid type A receptors (GABA(A)-Rs) in the mechanisms of general anesthesia.Principal findingsWith the knowledge that all general anesthetics positively modulate GABA(A)-R-mediated inhibitory transmission, site-directed mutagenesis comparing sequences of GABA(A)-R subunits of varying sensitivity led to identification of amino acid residues in the transmembrane domain that are critical for the drug actions in vitro. Using a photo incorporable analogue of the general anesthetic, R(+)etomidate, we identified two transmembrane amino acids that were affinity labelled in purified bovine brain GABA(A)-R. Homology protein structural modelling positions these two residues, αM1-11' and βM3-4', close to each other in a single type of intersubunit etomidate binding pocket at the β/α interface. This position would be appropriate for modulation of agonist channel gating. Overall, available information suggests that these two etomidate binding residues are allosterically coupled to sites of action of steroids, barbiturates, volatile agents, and propofol, but not alcohols. Residue α/βM2-15' is probably not a binding site but allosterically coupled to action of volatile agents, alcohols, and intravenous agents, and α/βM1-(-2') is coupled to action of intravenous agents.ConclusionsEstablishment of a coherent and consistent structural model of the GABA(A)-R lends support to the conclusion that general anesthetics can modulate function by binding to appropriate domains on the protein. Genetic engineering of mice with mutation in some of these GABA(A)-R residues are insensitive to general anesthetics in vivo, suggesting that further analysis of these domains could lead to development of more potent and specific drugs

    Molecular Sites for the Positive Allosteric Modulation of Glycine Receptors by Endocannabinoids

    Get PDF
    Glycine receptors (GlyRs) are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs) have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA) are positive modulators of α1, α2 and α3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly) potentiate α1 GlyRs but inhibit α2 and α3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM) region 2 and intracellular lysine 385 determine the positive modulation of α1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α1 GlyRs, without affecting inhibition of α2 and α3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain
    corecore